TRANSMISSION DE PUISSANCE INDUSTRIELLE DE GATES

MAINTENANCE PREVENTIVE + SECURITE

2019

DRIVEN BY POSSIBILITY™

TRANSMISSION DE PUISSANCE INDUSTRIELLE GATES

MAINTENANCE PREVENTIVE + SECURITE

GATES. DRIVEN BY POSSIBILITY.

Nous pouvons améliorer le fonctionnement de vos équipements. Gates est un véritable leader dans le domaine de la transmission de puissance mécanique, hydraulique et les services associés. Nous proposons en permanence notre expertise aux clients des différents marchés industriels grâce à l'innovation constante et à la qualité sans compromis de tous nos produits. Notre renommée s'est bâtie sur plus d'un siècle d'expérience, bien que chacune de nos actions soit orientée vers l'avenir.

QUAND L'INCONNU OUVRE LE CHAMP DES POSSIBLES.

En 1917, John Gates a révolutionné les machines industrielles avec la première courroie trapézoïdale en caoutchouc au monde. Ainsi débuta l'histoire de Gates Corporation avec l'innovation ancrée dans ses gènes. Grâce à sa politique continue de développement de produits, Gates a conçu une vaste gamme de courroies trapézoïdales, de courroies synchrones, de galets tendeurs, de poulies et de systèmes de transmission complets, couvrant une multitude d'applications.

L'INNOVATION ALIMENTEE PAR LA SCIENCE DES MATERIAUX.

L'évolution est dans l'ADN de Gates. Nous n'avons de cesse d'évoluer et sommes continuellement en quête de nouvelles méthodes pour répondre aux défis qui nous attendent avec des solutions destinées à accélérer la croissance et le développement de nos partenaires. Poly Chain® GT Carbon™ Volt® est l'une des toutes dernières innovations dans la gamme de courroies synchrones de Gates. Cette courroie synchrone en polyuréthane, très capacitive, dont la conception des cordes de traction en carbone est brevetée, convient pour les transmissions à couple élevé et à vitesse réduite.

ENGAGEMENT ENVERS NOS PARTENAIRES.

Certes inévitable, le temps d'immobilisation pour cause de maintenance et de réparation coûte cher, d'autant plus lorsqu'il est involontaire. Chaque minute d'arrêt se répercute directement sur vos résultats. Heureusement, en matière de transmissions par courroies, les arrêts de production imprévus peuvent souvent être évités en adoptant les bonnes approches d'inspection, de maintenance et de remplacement.

Spécialement conçu pour vous aider à installer et à entretenir correctement vos courroies industrielles Gates®, ce manuel vous permettra de réduire les temps d'immobilisation coûteux tout en améliorant la productivité de votre site.

TABLE DES MATIERES

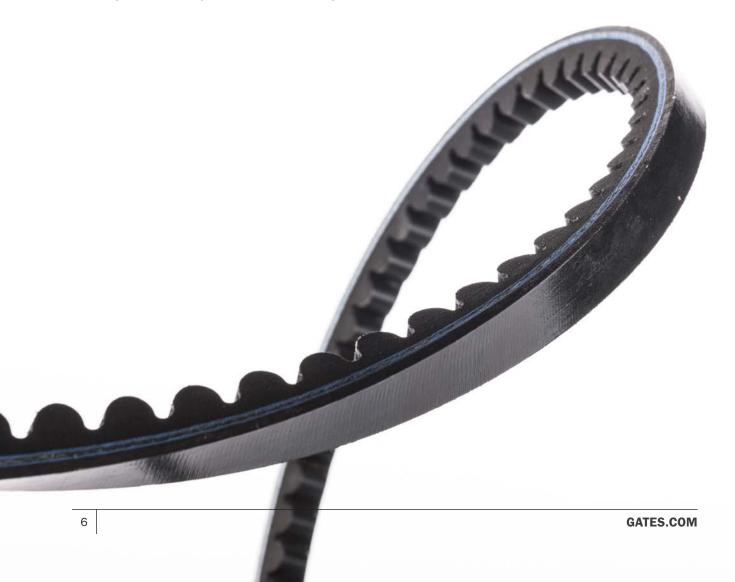
1. Pourquoi utiliser ce manuel de maintenance préventive	
Eléments d'un programme d'entretien efficace	6
Sources des problèmes de transmission	
2. Comment garantir des conditions de travail sûres	
La sécurité avant tout !	
Garantir la sécurité pendant l'inspection et la maintenance des transmissions par courroies	10
3. Comment installer correctement une transmission par courroie	
Identification des courroies	13
Comment sélectionner le type de courroie approprié	
Courroies trapézoïdales sections et dimensions nominales des courroies	17
Courroies synchrones sections et dimensions nominales des courroies	
Mesureur de courroies et table de conversion des longueurs	
Stockage des courroies	
Directives générales concernant le stockage et la manipulation des courroies	
Méthodes de stockage des courroies	
Influence du stockage des courroies	
Installation des courroies et des poulies	
Installation d'une courroie trapézoïdale	
Installation d'une courroie synchrone	
Vérification de la tension de la courroie	
Installation et alignement des poulies	
Amélioration de la performance de la transmission	
Amélioration de performances de transmission insuffisantes et de problèmes de bruit	
4. Comment garantir un programme de maintenance préventive efficace	
Inspection de la transmission : quand et à quelle fréquence	
Maintenance préventive de routine Inspection rapide des transmissions	
Arrêt complet pour inspection Maintenance préventive étape par étape	44
5. Comment diagnostiquer et résoudre des problèmes de transmission par courroie	
Liste de contrôle pour le dépannage	
Méthodes de dépannage	
Problèmes sur les transmissions par courroies trapézoïdales	
Problèmes sur les transmissions par courroies synchrones	53
6. Données techniques	
Liste de correspondances, courroies trapézoïdales	
Liste de correspondances, courroies synchrones	
Dimensions des gorges de poulies pour courroies trapézoïdales	
Dimensions des gorges de poulies pour courroies PolyFlex® (JB™) Profil de denture de poulie synchrone	
Diamètres minimums recommandés pour le galet tendeur	
Tolérances minimales d'installation et de rattrapage	
Tolérance pour courroie synchrone	
Utilisation et positionnement des galets tendeurs	
Conversion de chaîne à courroie	
Feuille de travail - Enquête sur le système de transmission	
Feuille de travail - Données Design IQ de Gates	
7. Comment Gates vous facilite la tâche	
Outils Gates	88
Outils d'analyse	
Comment Gates soutient votre activité	

1. POURQUOI UTILISER CE MANUEL DE MAINTENANCE PREVENTIVE

UTILITE DE L'ENTRETIEN PREVENTIF

ELEMENTS D'UN PROGRAMME D'ENTRETIEN EFFICACE

Une transmission par courroies industrielles correctement conçue et bien entretenue peut fonctionner, dans des circonstances normales, pendant de nombreuses années. Toutes les courroies Gates sont conçues pour fonctionner longtemps.


- Les courroies synchrones et courroies trapézoïdales de haute qualité de Gates comme Quad-Power® 4 et Predator® sont sans entretien.
- Les courroies trapézoïdales standard nécessitent un programme de maintenance régulier pour offrir une période de fonctionnement sans faille prolongée.

La maintenance préventive contribue à prévenir des défaillances coûteuses et garantit le fonctionnement optimal des transmissions par courroies. Maximisant la productivité, elle constitue dès lors un investissement judicieux.

Un programme d'entretien complet et efficace englobe les éléments suivants :

- Le maintien de conditions de travail sûres ;
- Une procédure de montage correcte de la courroie ;
- Des inspections régulières de la transmission par courroie ;
- Une connaissance suffisante des produits ;
- Des évaluations périodiques des performances ;
- Une détection et une solution systématique des problèmes.

Tous ces points seront évoqués dans les différents chapitres de ce manuel.

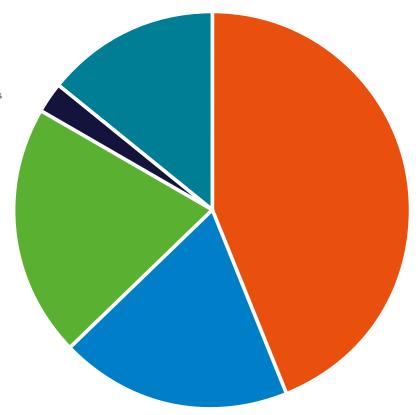
UTILITE DE L'ENTRETIEN PREVENTIF

SOURCES DES PROBLEMES DE TRANSMISSION

Quand on compare les entrainements à chaines (et leurs problèmes récurrents de lubrification), ou les transmissions à engrenages (et les problèmes mécaniques associés très coûteux), les transmissions par courroies offrent une transmission de puissance d'un excellent rapport qualité/prix et d'une fiabilité exceptionnelle. Cette fiabilité dépendra directement de l'entretien adéquat de vos courroies et transmissions.

La principale cause de problèmes de transmissions par courroies est une maintenance inadéquate :

Maintenance inappropriée


- Absence de retension
- Non-remplacement des poulies usées
- Absence de nettoyage des carters
- Absence de vérification des structures et des composants de transmission fragiles
- Non-vérification de l'alignement

Mauvaise conception de la transmission

- Diamètres des poulies sous-dimensionnés
- Courroie sous-dimensionnée
- Transmission surdimensionnée
- Vitesse périphérique excessive
- Type de courroie incorrect

Installation inadaptée

- Effet de rotation ou de levier sur les courroies
- Désalignement
- Tension de courroie incorrecte
- Inadéquation entre les courroies et/ou poulies utilisées
- Frottement contre le carter

Manipulation ou stockage incorrect(e)

- Température
- Humidité élevée
- Stockage trop long des courroies
- Proximité trop grande avec un équipement produisant de l'ozone
- Exposition à la lumière directe du soleil

Facteurs environnementaux

- Poussière
- Débris
- Eau/humidité
- Huile/graisse
- Chaleur/froid
- Produits chimiques

2. COMMENT GARANTIR DES CONDITIONS DE TRAVAIL SURES

POLITIQUE DE SECURITE

LA SECURITE AVANT TOUT

Avertissement! Assurez votre sécurité! Les systèmes de transmission par courroie de Gates sont d'une très grande fiabilité lorsqu'ils sont utilisés en toute sécurité conformément aux recommandations d'utilisation de Gates. Il existe cependant des UTILISATIONS SPECIFIQUES A EVITER en raison du risque de blessure grave, voire de décès. Ces utilisations abusives interdites comprennent:

APPLICATIONS AERONAUTIQUES

N'utilisez pas les courroies ou poulies Gates dans des avions, systèmes de transmission d'hélices ou de rotor ou dans des systèmes d'entraînement auxiliaires en vol. Les systèmes de transmission par courroie de Gates ne sont pas destinés à être utilisés dans l'aéronautique.

SYSTEMES DE LEVAGE

Il est interdit d'utiliser les courroies ou poulies de Gates pour des applications conçues pour le levage ou l'abaissement de charges et ne disposant pas de systèmes de sécurité indépendants séparés. Pour les applications nécessitant des chaînes d'un type spécial « Levage » ou « Test », à résistance à la traction minimale ou aux exigences de résistance à la traction certifiées/testées, sachez que comme les procédures de conception de transmission des courroies Gates sont différentes de celles des chaînes métalliques, la résistance à la traction d'une courroie, en comparaison avec la résistance à la traction d'une chaîne, ne devrait constituer qu'un élément parmi d'autres du processus de conception. Avant de pouvoir être envisagée, une telle application nécessite une analyse sérieuse avec la participation du client.

SYSTEMES DE FREINAGE

Il est interdit d'utiliser les courroies ou poulies de Gates pour des applications conçues pour le freinage, le ralentissement ou l'arrêt de charges et ne disposant pas de systèmes de sécurité indépendants séparés. Les systèmes de transmission par courroie de Gates ne sont pas destinés à fonctionner comme dispositif de freinage dans des systèmes d'« arrêt d'urgence ».

SYSTEMES D'AEROGLISSEURS

Les produits de Gates ne sont pas conçus, fabriqués ou testés pour une utilisation dans des applications d'aéroglisseur. L'acheteur est seul responsable de la sélection et du test de produits pour toute utilisation prévue.

CONSEILS DE SECURITE

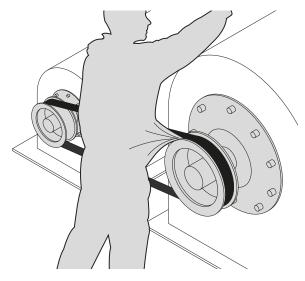
GARANTIR LA SECURITE PENDANT L'INSPECTION ET LA MAINTENANCE DES TRANSMISSIONS PAR COURROIES

Il est impératif de maintenir des conditions de travail sûres autour de vos transmissions. D'une part, l'entretien sera facilité ; de l'autre, l'opérateur verra sa sécurité améliorée :

1. PERSONNEL QUALIFIE

Toujours veiller à ce que seul du personnel formé intervienne sur vos transmissions par courroies.

2. MACHINES TOUJOURS HORS TENSION

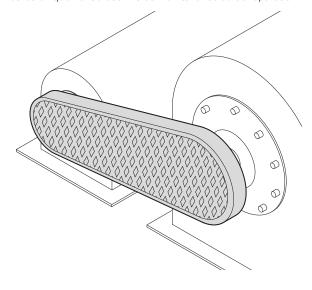

Mettez toujours les machines hors tension, isolez la transmission (verrouillage/étiquetage) avant le début d'un entretien, même court. Verrouillez le boîtier de commande, apposez une étiquette d'avertissement et gardez la clé dans votre poche. Pour encore plus de sécurité, retirez les fusibles si possible. Il est souvent nécessaire, pour un contrôle, d'observer une machine en marche. Ne la touchez toutefois jamais avant l'arrêt complet.

3. POSITION DES COMPOSANTS

Tous les composants de la machine doivent se trouver en position de sécurité (point mort). Positionnez les volants, contrepoids, engrenages et embrayages de façon à éviter tout mouvement accidentel. Suivez toujours les conseils du constructeur pour des procédures d'entretien sûres.


4. TENUE VESTIMENTAIRE ADAPTEE

Avant toute opération sur la machine, veillez à porter des vêtements adaptés ainsi qu'un équipement de protection individuelle.


5. ASSURER UN ACCES SUR A LA TRANSMISSION

Assurez-vous que l'accès aux transmissions est parfaitement sécurisé. Les sols doivent être propres et exempts d'huile et de débris pour que l'opérateur puisse travailler sur la machine en toute stabilité.

6. CARTERS BIEN CONÇU

Chaque transmission par courroie doit être munie de carters de protection durant le fonctionnement. Ces derniers peuvent être retirés uniquement à des fins de maintenance ou de réparation.

CONSEILS DE SECURITE

Voici les caractéristiques d'un bon carter :

- La transmission est entièrement cartérisée ;
- Il possède des grilles ou des ouvertures pour une bonne ventilation ;
- Les ouvertures sont de dimensions telles qu'il est impossible d'y insérer les doigts et d'être happé par la transmission ;
- Le carter est, de préférence, équipé d'un dispositif d'arrêt d'urgence qui stoppe la machine dès que le celui-ci est retiré ;
- Les panneaux ou plaques amovibles sont facilement accessibles;
- S'il est endommagé, le carter est facile à remplacer ;
- Le carter doit protéger la transmission contre les éléments météorologiques, les débris et les dommages, si cela s'avère nécessaire.

7. ESSAI

Après un entretien, effectuez toujours un essai pour vous assurer du bon fonctionnement de la transmission. Procédez à toutes les vérifications nécessaires et prenez des mesures correctives, le cas échéant.

COMMENT INSTALLER CORRECTEMENT UNE TRANSMISSION PAR COURROIE

COMMENT SELECTIONNER LE TYPE DE COURROIE APPROPRIE

La conception et l'installation correctes de vos transmissions par courroies sont essentielles pour garantir leur performance et leur durée de vie optimales. Les informations suivantes vous familiariseront avec la grande variété de courroies utilisées dans l'industrie.

COURROIES TRAPEZOIDALES

Section étroite

- Courroie trapézoïdale haute puissance utilisée afin de réduire sensiblement les coûts de transmission et de minimiser l'encombrement.
- Compatible avec la gamme complète de puissances de transmission et nécessitant moins de courroies par rapport à une section classique.
- Les dimensions des courroies sont désignées comme suit : SPZ/3V, SPA, SPB/5V, SPC et 8V.
- Ces courroies se retrouvent dans les gammes Gates suivantes : courroies trapézoïdales Gates Predator®, Gates Super HC® et Delta Narrow™.

Section classique

- Courroies trapézoïdales de type classique utilisées dans les applications exigeantes.
- Les dimensions des courroies sont désignées comme suit :
 Z, A, B, C, D ou E.
- Ces courroies se retrouvent dans les gammes Gates suivantes : courroies trapézoïdales Hi-Power® et Delta Classic™.

Courroles enveloppées et à flancs nus

- Les courroies enveloppées possèdent une enveloppe textile à flancs concaves, des angles inférieurs arrondis et des dos bombés.
- Les courroies à flancs nus n'ont pas d'enveloppe textile, possèdent des flancs droits meulés et sont munis de crantages moulés spéciaux. Les crantages diminuent la contrainte de flexion, ce qui permet aux courroies de fonctionner dans des poulies de plus petit diamètre, comparativement aux courroies enveloppées. Les courroies à flancs nus offrent un rendement amélioré par rapport aux courroies enveloppées.

Gates propose des courroies trapézoïdales à flancs nus aussi bien en sections classiques qu'étroites :

- Tri-Power® est une courroie crantée moulée à flancs nus de section classique, disponible en profils AX, BX et CX. Sa longueur est désignée par la même référence de courroie standard que les autres courroies à section classique.
- Quad-Power® 4 sans entretien est une courroie à flancs nus de section étroite, disponible en profils XPZ/3VX, XPA, XPB/5VX et XPC
- Super HC® MN est également une courroie à flancs nus de section étroite disponible en profils SPZ-MN, SPA-MN, SPB-MN et SPC-MN.

Dans tous les cas, un « X » est utilisé dans la description de la courroie pour désigner une construction crantée moulée. Par exemple : AX26 est une courroie de section classique, crantée moulée, à flancs nus, et XPB2990/5VX1180 est une courroie de section étroite, crantée moulée, à flancs nus, ayant une longueur de référence de 2990mm ou une circonférence effective de 118".

Courroles multiples/PowerBand®

- Les courroies PowerBand® ont été mises au point par Gates pour les transmissions soumises à des surcharges, à des à-coups ou à des vibrations excessives, soit autant de situations où des courroies simples pourraient se retourner dans les gorges des poulies. Une nappe à haute résistance unit de façon permanente deux courroies ou plus de manière à offrir une rigidité latérale. Les courroies sont ainsi maintenues en ligne droite dans les gorges des poulies.
- La construction PowerBand® de Gates est proposée en :
 - Hi-Power® section classique enveloppée profils B, C et D;
 - Super HC[®] section étroite enveloppée profils SPB, SPC, 3V/9J, 5V/15J et 8V/25J;
 - Predator® PB section étroite enveloppée profils SPBP/5VP, SPCP et 8VP;
 - Quad-Power® 4 PowerBand® sans entretien, section étroite flancs nus profils XPZ, XPA, XPB, 3VX et 5VX.
- Courroies trapézoïdales sans entretien disponibles auprès de Gates, en versions monobrin et PowerBand®:
 - Predator®
 - Quad-Power® 4

Courroles pour applications exigeantes

- Ces courroies sont utilisées sur des transmissions légères et sont conçues pour être utilisées avec des galets tendeurs sur le dos de la courroie.
- Les dimensions des courroies sont désignées comme suit : Profils 3L, 4L, 5L.
- Ces courroies se retrouvent dans la gamme PoweRated[®] de Gates.
- Courroies trapézoïdales PoweRated® désignées par la section et la circonférence extérieure, et disponibles en profils 3L, 4L et 5L. Cette courroie spéciale est conçue pour les applications d'embrayages, avec à-coups et transmissions à galet tendeur sur le dos, et se reconnaît à sa couleur verte spécifique. Renforcée de cordes de traction en fibre d'aramide (à poids égal, résistance supérieure à l'acier).
- Les courroies PoweRated® sont interchangeables avec les Truflex®, mais les Truflex® ne sont pas interchangeables avec les PoweRated®.

Courroles Dubl-V

Il s'agit d'une version spéciale de Hi-Power® de Gates destinée aux transmissions dites « serpentines » (inversion du sens de rotation des arbres), où la puissance est transmise aux poulies aussi bien par le sommet que par la base de la courroie. Les courroies Dubl-V sont désignées par des sections AA, BB, CC ou DD, et par leur longueur effective.

COMMENT SELECTIONNER LE TYPE DE COURROIE APPROPRIE

Courroles PolyFlex® JB™

- Polyflex® est une courroie unique se singularisant par son angle de 60° et un dos rainuré, et conçue spécifiquement pour offrir une longue durée de vie dans des transmissions à poulies de faible diamètre. Polyflex® JB™ est idéale pour les transmissions compactes, les transmissions à haute vitesse et les transmissions nécessitant un fonctionnement particulièrement souple.
- Les lettres « JB » font référence à la configuration de la courroie : deux, trois courroies ou davantage jointes ensemble pour apporter une stabilité supplémentaire et une performance améliorée. Ce type de courroies multiples est à privilégier aux courroies simples appariées chaque fois que possible.
- Les courroies Polyflex® JB™ sont idéales pour ces applications :
 - Fraiseuses, rectifieuses ou perceuses;
 - Tours
 - Entraînement de broches ;
 - · Centrifugeuses;
 - · Souffleries:
 - · Compresseurs haute vitesse.

Les courroies Polyflex[®] JB[™] sont désignées par la largeur au sommet et la longueur effective et sont disponibles en 3M(JB), 5M(JB), 7M(JB) et 11M(JB).

Courroles striées ou Micro-V®

Les courroies Micro-V® de Gates surpassent les autres courroies striées grâce à des extrémités des stries tronquées. Ce profil plus court confère aux nouvelles courroies Micro-V® une flexibilité accrue, réduit l'accumulation de chaleur et leur permet de fonctionner à des vitesses extrêmement élevées sur des poulies de plus petit diamètre.

Autres avantages des extrémités tronquées :

- 1. la courroie ne talonne pas dans la poulie ; l'effet de coin supérieur ;
- la courroie peut mieux tolérer les débris dans les gorges de la poulie;
- 3. la courroie peut être utilisée sur des poulies plates.
- Les courroies Micro-V® de Gates se caractérisent par un fonctionnement extrêmement fluide et une résistance élevée aux huiles, à la chaleur et aux autres conditions défavorables.
- Les courroies Micro-V® de Gates sont disponibles pour des applications industrielles dans les profils suivants : PJ, PK, PL et PM.

Courroles Multi-Speed (transmissions de variateurs)

Les courroies Multi-Speed possèdent une forme bien spécifique. La largeur au sommet des courroies Multi-Speed est généralement plus grande que leur épaisseur. Cette forme spéciale autorise une plus grande plage de rapports de vitesses que les courroies standard. Habituellement crantées à l'intérieur, les courroies Multi-Speed sont indiquées pour le matériel à variation de vitesse.

Les courroies Multi-Speed de Gates sont désignées par leur largeur au sommet, leur circonférence extérieure, ainsi que l'angle du trapèze. L'angle de gorge peut être mesuré sur les poulies d'entraînement.

COURROIES SYNCHRONES

Ces courroies sont également appelées courroies synchrones ou dentées et sont utilisées là où les vitesses des arbres entraînés doivent être synchronisées avec la rotation de l'arbre moteur. Elles peuvent aussi être utilisées afin d'éliminer le bruit et les problèmes d'entretien causés par les transmissions à chaînes.

PowerGrip® et Poly Chain®

Les courroies synchrones comme Poly Chain® Carbon™ Volt® de Gates, peuvent être utilisées dans les transmissions à puissance et couple élevés, où l'espace est restreint et où les possibilités d'ajustement sont limitées.

Les transmissions synchrones sont extrêmement efficaces : rendement typique de 98% avec des systèmes Poly Chain® Carbon™ Volt® ou PowerGrip® GT3 correctement entretenus. En comparaison, les transmissions par chaînes ont un rendement compris entre 91 et 98%, tandis que les courroies trapézoïdales ont un rendement moyen compris entre 93 et 98%.

Les courroies synchrones sont disponibles dans une gamme de dentures variées, diverses dimensions et constructions afin de répondre à une grande variété d'applications. Les dimensions importantes des courroies synchrones sont : pas de courroie, longueur primitive, largeur.

- Pas d'une courroie distance en millimètres ou en pouces entre deux sommets de dents adjacents sur la ligne primitive de la courroie.
- Longueur primitive d'une courroie circonférence en millimètres ou en pouces mesurée au niveau de la ligne primitive.
- Largeur largeur du sommet en millimètres ou en pouces.
- Denture pour identifier facilement la denture, consultez la rubrique Identification des courroies. Les courroies synchrones sont entraînées par des poulies dentées, dont les dimensions principales sont:
- Pas distance qui sépare le centre de deux entre-dents, mesurée sur le cercle primitif de la poulie. Le cercle primitif de la poulie correspond à la ligne primitive de la courroie montée.

Les courroies synchrones Gates sont disponibles en version Poly Chain® Carbon™ Volt®, PowerGrip® GTX, PowerGrip® GT3, PowerGrip® HTD®, PowerGrip®, Twin Power® et Long Length.

COMMENT SELECTIONNER LE TYPE DE COURROIE APPROPRIE

COURROIES EN POLYURETHANE

La gamme de produits Synchro-Power® standard de Gates couvre une multitude d'applications. Si votre application exige une courroie répondant à des spécifications précises, Gates propose également une gamme de courroies polyuréthane sur mesure. Ces courroies polyuréthane, conçues sur mesure pour répondre à vos exigences les plus strictes, affichent des niveaux de qualité similaires. Nos ingénieurs application peuvent travailler à vos côtés pour concevoir la courroie répondant spécifiquement à vos exigences. Ces produits peuvent être personnalisés avec différents revêtements, tasseaux ou finitions spéciales. Cette gamme constitue donc le parfait complément à l'offre de produits Synchro-Power® standard de Gates.

COURROIES A CONDUCTIBILITE STATIQUE

Les décharges d'électricité statique sont susceptibles de représenter un danger dans les transmissions par courroies utilisées dans des environnements potentiellement explosifs. La conductibilité statique est une caractéristique requise des courroies afin de prévenir les décharges d'électricité statique et de se conformer à la directive ATEX pour l'utilisation de courroies en atmosphères explosibles.

Les courroies trapézoïdales sont majoritairement fabriquées conformément à la norme de conductibilité statique ISO 1813. Les courroies Hi-Power® (PowerBand®), Tri-Power®, Super HC® (PowerBand®), Super HC® MN, Quad-Power® 4 (PowerBand®), Predator® (PowerBand®), Micro-V® neuves de Gates répondent toutes à la conductibilité statique comme définie par la norme ISO 1813 et peuvent être utilisées dans les conditions décrites dans la directive 2014/34/UE-ATEX.

Les courroies synchrones Poly Chain® Carbon™ Volt® 8MGTV et 14MGTV, PowerGrip® GTX 8MX et 14MX, PowerGrip® GT3 8MGT et 14MGT, ainsi que PowerGrip® HTD® 14M répondent à la conductibilité comme définie par la norme ISO 9563 et peuvent être utilisées comme telles dans les conditions décrites dans la directive 2014/34/UE-ATEX.

Les courroies PowerGrip® HTD® 3M, 5M, 8M, 20M, PowerGrip® Timing, Poly Chain® GT, Poly Chain® GT2, Poly Chain® GT Carbon™, Mini Poly Chain® GT Carbon™, Polyflex®, Polyflex® JB™, PoweRated®, Micro-V® PK et Predator® (PowerBand®) 8VP ne sont pas considérées comme répondant à la conductibilité statique.

Lorsqu'une courroie est utilisée dans un environnement dangereux, des protections supplémentaires doivent être employées afin de s'assurer de l'absence de décharge d'électricité statique (étincelles). La partie de la courroie en contact avec la poulie doit être conductrice afin que la charge statique soit dissipée. Les courroies trapézoïdales doivent posséder des flancs conducteurs en contact avec une poulie conductrice. Les courroies synchrones doivent posséder une surface des dents conductrice en contact avec une poulie conductrice.

La présence inhabituelle ou excessive de débris ou de contaminants sur la surface de contact de la courroie ou les gorges des poulies ou pignons doit être nettoyée et éliminée. Les courroies trapézoïdales enveloppées (courroies trapézoïdales à couche textile sur la surface de transmission) doivent être inspectées afin de vérifier l'absence d'usure de la couche textile. Si la couche textile sur les flancs de la courroie est usée, les courroies doivent être immédiatement remplacées. La conductibilité statique des courroies trapézoïdales à flancs nus n'est pas altérée par l'usure des flancs. Au moindre doute sur l'état de la courroie et à ses caractéristiques de conductibilité statique, remplacez la courroie.

Tout système de transmission par courroie mis en œuvre dans un environnement potentiellement dangereux doit être mis correctement à la masse, qu'il utilise une courroie synchrone ou une courroie trapézoïdale. Une mise à la masse est nécessaire pour l'élimination de la charge statique. Ce chemin comprend une courroie conductrice statique, une poulie ou un pignon conducteur, un moyeu conducteur, un arbre conducteur, des roulements conducteurs et la terre.

DECOUVREZ L'ENSEMBLE DE LA GAMME DE PRODUITS DANS LE CATALOGUE TRANSMISSION DE PUISSANCE INDUSTRIELLE GATES (E1/20211)

COURROIES TRAPEZOIDALES | SECTIONS ET DIMENSIONS NOMINALES DES COURROIES

PREDATOR®

Courroie trapézoïdale enveloppée de section étroite/section classique

	LARGEUR mm	HAUTEUR mm
SPBP/5VP	16	13
SPCP	22	18
8VP	26	23

QUAD-POWER® 4

Courroie trapézoïdale à crantage moulé et flancs nus de section étroite, EPDM

	LARGEUR mm	HAUTEUR mm
XPZ/3VX	10	8
XPA	13	10
XPB/5VX	16	13
XPC	22	18

SUPER HC® MN

Courroie trapézoïdale à crantage moulé et flancs nus de section étroite

	LARGEUR mm	HAUTEUR mm
SPZ-MN	10	8
SPA-MN	13	10
SPB-MN	16	13
SPC-MN	22	18

SUPER HC®

Courroie trapézoïdale enveloppée de section étroite

	LARGEUR mm	HAUTEUR mm
SPZ/3V	10	8
SPA	13	10
SPB/5V	16	13
SPC	22	18
8V	26	23

TRI-POWER®

Courroie trapézoïdale à crantage moulé et flancs nus de section classique, EPDM

	-	
	LARGEUR mm	HAUTEUR mm
AX	13	8
BX	17	11
CX	22	14

HI-POWER®

Courroie trapézoïdale enveloppée de section classique

	LARGEUR mm	HAUTEUR mm
Z	10	6
A	13	8
В	17	11
С	22	14
D	32	19
Е	38	23

DELTA CLASSIC™

Courroie trapézoïdale enveloppée de section classique

	LARGEUR mm	HAUTEUR mm
Z	10	6
A	13	8
В	17	11
С	22	14
D	32	19

DELTA NARROW™

Courroie trapézoïdale enveloppée de section étroite

	LARGEUR mm	HAUTEUR mm
SPZ/3V	10	8
SPA	13	10
SPB/5V	16	13
SPC	22	18

PREDATOR® POWERBAND®

Courroie multibrins enveloppée de section étroite

	LARGEUR mm	HAUTEUR mm	PAS mm
SPBP	16	13	19,00
SPCP	22	18	25,50
5VP/15JP	16	13	17,50
8VP/25JP	26	23	28,60

COURROIES TRAPEZOIDALES | SECTIONS ET DIMENSIONS NOMINALES DES COURROIES

QUAD-POWER® 4 POWERBAND®

Courroie multibrins à crantage moulé et flancs nus de section étroite

	LARGEUR mm	HAUTEUR mm	PAS mm
XPZ	10	8	12,00
XPA	13	10	15,00
XPB	16	13	19,00
3VX	10	8	10,30
5VX	16	13	17,50

SUPER HC® ET HI-POWER® POWERBAND®

Courroie multibrins enveloppée de section étroite/section classique

	LARGEUR mm	HAUTEUR mm	PAS mm
SPB	16	13	19,00
SPC	22	18	25,50
3V/9J	10	8	10,30
5V/15J	16	13	17,50
8V/25J	26	23	28,60
В	17	10	19,05
С	22	12	25,40
D	32	19	36,50

HI-POWER® DUBL-V

Courroie trapézoïdale double face enveloppée de section classique

Courroie multibrins enveloppée de section étroite/section classique

	LARGEUR mm	HAUTEUR mm
AA	13	10
ВВ	17	14
CC	22	18
DD	32	25

POWERATED®

Courroie trapézoïdale enveloppée d'une couche textile verte

	LARGEUR mm	HAUTEUR mm
3L	3/8	7/32
4L	1/2	5/16
5L	21/32	3/8

POLYFLEX®

Courroie trapézoïdale en polyuréthane

	LARGEUR mm	HAUTEUR mm
3M	3	2,28
5M	5	3,30
7M	7	5,33
11M	11	6,85

POLYFLEX® JB™

Courroie multibrins en polyuréthane

	LARGEUR mm	HAUTEUR mm	PAS mm
3M-JB	3	2,28	3,35
5M-JB	5	3,30	5,30
7M-JB	7	5,33	8,50
11M-JB	11	7,06	13,20

MICRO-V®

Courroie trapézoïdale striée

	HAUTEUR mm	PAS mm
PJ	3,50	2,34
PK	4,45	3,56
PL	9,50	4,70
PM	16,50	9,40

Comme décrit dans les normes ISO, les dimensions nominales définissent les poulies sur lesquelles les courroies vont se monter.

Elles ne représentent pas la section exacte de la courroie. Celle-ci est déterminée par la construction de la courroie et elle est propre à Gates.

COURROIES SYNCHRONES | SECTIONS ET DIMENSIONS NOMINALES DES COURROIES

POLY CHAIN® CARBON™ VOLT®

Courroie synchrone en polyuréthane antistatique à cordes de traction en carbone brevetées et denture curviligne optimisée

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
8MGTV	8	5,90	3,40
14MGTV	14	10,20	6,00

POLY CHAIN® CARBON GT

Courroies synchrones en polyuréthane avec cordes de traction en carbone brevetées

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
5MGT	5	3,81	1.93

POLY CHAIN® GT2

Courroie synchrone en polyuréthane

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
8MGT	8	5,90	3,40
14MGT	14	10,20	6,00

POWERGRIP® GTX

Courroie synchrone en caoutchouc à corde de traction en verre haute résistance $% \left(1\right) =\left(1\right) \left(1\right) \left($

	PAS mm		HAUTEUR DE LA DENT mm
8MX	8	5,6	3,4
14MX	14	10	6

POWERGRIP® GT3

Courroie synchrone en néoprène à denture GT optimisée

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
2MGT	2	1,52	0,71
3MGT	3	2,41	1,12
5MGT	5	3,81	1,92
8MGT	8	5,60	3,40
14MGT	14	10,00	6,00

POWERGRIP® HTD®

Courroie synchrone en néoprène à denture HTD®

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
3M	3	2,40	1,20
5M	5	3,80	2,10
8M	8	5,6	3,40
14M	14	10,00	6,10
20M	20	13,20	8,40

POWERGRIP®

Courrole synchrone classique

	PAS pouces	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
MXL	2/25 (0,080")	2,032	1,14	0,51
XL	1/5 (0,200")	5,08	2,30	1,27
L	3/8 (0,375")	9,525	3,50	1,91
Н	1/2 (0,500")	12,7	4,00	2,29
ХН	7/8 (0,875")	22,225	11,40	6,36
XXH	1 1/4 (1,250")	31,75	15,20	9,53

COURROIES SYNCHRONES | SECTIONS ET DIMENSIONS NOMINALES DES COURROIES

TWIN POWER®

Courroie synchrone double face

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
	PowerG	irip® GT2	
8MGT	8	8,80	3,40
14MGT	14	14,42	5,82
	PowerG	rip® HTD®	
5M	5	5,70	2,10
	Power	irip® CTB	
XL	1/5 pouce	3,05	1,27
L	3/8 pouce	4,58	1,91
Н	1/2 pouce	5,95	2,29

LONG LENGTH

Courroie synchrone à bouts libres

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
	Poly Chain®	GT Carbon™	
8MGT	8	5,90	3,40
14MGT	14	10,20	6,00
	Power	Grip [®] GT	
2MR	2	1,52	0,71
3MR	3	2,41	1,12
5MR	5	3,81	1,92
8MR	8	5,60	3,34
	PowerG	rip® HTD®	
ЗМ	3	2,40	1,10
5M	5	3,80	2,10
8M	8	6,00	3,40
14M	14	10,00	6,00
	PowerG	rip [®] CTB	
MXL	2,032	1,14	0,51
XL	5,08	2,30	1,27
L	9,525	3,60	1,91
Н	12,7	4,30	2,29

SYNCHRO-POWER®

Courroie synchrone à bouts libres/sans fin en polyuréthane

SERIE T

Courroies synchrones standards pour des convoyeurs et des applications de transmission de puissance modérée

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
T2,5	2,5	1,30	0,70
T5	5	2,20	1,20
T10	10	4,50	2,50
T20	20	8,00	5,00
DL-T5	5	3,30	1,20
DL-T10	10	6,80	2,50

SERIE AT

Courroies synchrones haute résistance pour des applications de transmission de puissance et de positionnement précis

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
AT5	5	2,70	1,20
AT10	10	4,50	2,50
AT20	20	8,00	5,00

SERIE ATL

Courroies linéaires spéciales avec des cordes de traction en acier renforcées pour une résistance et une précision extrêmes

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
ATL5	5	2,70	1,20
ATL10	10	4,80	2,50
ATL20	20	8,00	5,00

COURROIES SYNCHRONES | SECTIONS ET DIMENSIONS NOMINALES DES COURROIES

SERIE TRAPEZOIDALE

Courroies synchrones standard avec un profil de dents trapézoïdal pour des applications de transport et de convoyage

	PAS mm	TOTALE	
XL	5,08	2,29	1,27
L	9,525	3,56	1,90
Н	12,7	4,06	2,29
XH	22,225	11,18	6,35

SERIE HTD®

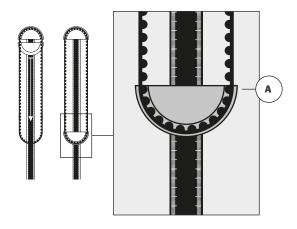
Courroies HTD® avec profil de dents curviligne avec les avantages du polyuréthane avancé et des cordes de traction en acier

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
HTD 5M	5	3,60	2,10
HTD 8M	8	5,60	3,40
HTD 14M	14	10,00	6,00

SERIE STD

Courroies à bouts libres haute résistance avec les avantages du polyuréthane avancé et des cordes de traction en acier

	PAS mm	HAUTEUR TOTALE mm	HAUTEUR DE LA DENT mm
STD 5M	5	3,30	1,90
STD 8M	8	5,10	3,00


SERIE BLACK FLAT

Courroies plates en polyuréthane renforcé d'acier pour convoyage

	Hauteur TOTALE mm
BFL20	2,00
BFL32	3,20
BFL38	3,80
BFL48	4,80

MESUREUR DE COURROIES ET TABLE DE CONVERSION DES LONGUEURS

PLAGE DE MESURE

L'instrument de mesure de la longueur convient pour les courroies trapézoïdales, les courroies Micro- V^{\otimes} et les courroies synchrones. La longueur intérieure (Li) de la courroie doit être mesurée chaque fois (côté profil vers l'intérieur). A l'aide de la table de conversion des longueurs (page 23), la longueur nominale de la courroie peut être calculée à partir de la longueur intérieure mesurée. La plage de mesure s'étend de 600 à 4100mm de longueur intérieure.

PRECISION DE LA MESURE

La longueur intérieure mesurée donne uniquement une indication de la longueur. La mesure n'est pas adaptée pour définir la longueur avec précision ni pour définir la tolérance de longueur.

PROCESSUS DE MESURE

Une courroie de transmission devant être mesurée sera disposée sur le plateau métallique fixe, tandis que la partie mobile sera déplacée jusqu'à ce que les deux côtés de la courroie soient tendus. Ce faisant, le côté profil de la courroie doit être tourné vers l'intérieur (ou le côté présentant le marquage de la courroie vers l'extérieur). La longueur intérieure de la courroie doit être lue sur l'échelle au niveau du bord supérieur du demi-cercle mobile (**Point A**).


Profil	Dimension (largeur x hauteur)	Standard	Définition de la longueur	Largeur primitive (mm)	Longueur extérieure La	Longueur de référence Ld
			Predator®			
SPBP	16 x 13	ISO	Longueur de référence, Ld	14	La ~ Ld + 22	Ld ~ Li + 60
SPCP	22 x 18	150	Longueur de reference, Lu	19	La ~ Ld + 30	Ld ~ Li + 83
			Quad-Power® 4			
XPZ	10 x 8			8,5	La ~ Ld + 10	Ld ~ Li + 38
XPA	13 x 10	ISO	Longueur de référence, Ld	11	La ~ Ld + 15	Ld ~ Li + 45
XPB	16 x 13	150	Longueur de reference, Lu	14	La ~ Ld + 18	Ld ~ Li + 60
XPC	22 x 18			19	La ~ Ld + 30	Ld ~ Li + 83
			Super HC® MN			
3VX	10 x 8	RMA	Longueur effective, EL		EL	Li + 50
5VX	16 x 13	RIVIA	Longueur errective, EL	-	EL	Li + 80
			Super HC® / Super HC	® MN		
SPZ	10 x 8			8,5	La ~ Ld + 13	Ld ~ Li + 38
SPZ-MN	10 / 8			0,5	La ~ Ld + 10	Ld ~ Li + 38
SPA	13 x 10			11	La ~ Ld + 18	Ld ~ Li + 45
SPA-MN	13 / 10	ISO	Longueur de référence, Ld	11	La ~ Ld + 15	Ld ~ Li + 45
SPB	16 x 13		Longueur de reference, Lu	14	La ~ Ld + 22	Ld ~ Li + 60
SPB-MN	10 / 13			17	La ~ Ld + 18	Ld ~ Li + 60
SPC	22 x 18			19	La ~ Ld + 30	Ld ~ Li + 83
SPC-MN	22 / 10			10	La ~ Ld + 25	Ld ~ Li + 83
			Super HC® / Delta Na	rrow™		
3V	10 x 8				EL	Li + 50
5V	16 x 13	RMA	Longueur effective, EL	-	EL	Li + 80
8V	26 x 23				EL	Li + 145

MESUREUR DE COURROIES ET TABLE DE CONVERSION DES LONGUEURS

Profil	Dimension (largeur x hauteur)	Standard	Définition de la longueur	Largeur primitive (mm)	Longueur extérieure La	Longueur de référence Ld	
	Tri-Power®						
AX	13 x 8				La ~ Ld + 15	Ld ~ Li + 30	
BX	17 x 11	RMA	Longueur effective, EL	-	La ~ Ld + 24	Ld ~ Li + 40	
CX	22 x 14				La ~ Ld + 34	Ld ~ Li + 58	
			Hi-Power® / Delta Cla	ıssic™			
Z	10 x 6	ISO	Longueur de référence, Ld	8,5	La ~ Ld + 19	Ld ~ Li + 22	
10mm	10 % 0	DIN	Longueur intérieure, Li	0,0	La ~ Li + 40	Ld ~ Li + 22	
А	13 x 8	ISO	Longueur de référence, Ld	11	La ~ Ld + 23	Ld ~ Li + 30	
13mm	13 / 0	DIN	Longueur intérieure, Li	11	La ~ Li + 53	Ld ~ Li + 30	
В	17 x 11	ISO	Longueur de référence, Ld	14	La ~ Ld + 32	Ld ~ Li + 40	
17mm	11 × 11	DIN	Longueur intérieure, Li	17	La ~ Li + 70	Ld ~ Li + 40	
С	22 x 14	ISO	Longueur de référence, Ld	19	La ~ Ld + 42	Ld ~ Li + 58	
22mm	22 / 17	DIN	Longueur intérieure, Li	13	La ~ Li + 90	Ld ~ Li + 58	
D	32 x 19	ISO	Longueur de référence, Ld	27	La ~ Ld + 59	Ld ~ Li + 75	
32mm	32 X 13	DIN	Longueur intérieure, Li		La ~ Li + 120	Ld ~ Li + 58	
			Predator® PowerBa	nd®			
SPBP-PB	16 x 15	ISO	Longueur de référence, Ld	14	La ~ Ld + 38	Ld ~ Li + 60	
SPCP-PB	22 x 20	130	Longueur de reference, Lu	19	La ~ Ld + 46	Ld ~ Li + 83	
			Predator® PowerBa	nd®			
5VP-PB	16 x 15	RMA		15.04	EL + 31	Ld ~ Li + 70	
15JP	10 X 13	ISO	Language offactive El	15,24	EL + 31	Ld ~ Li + 70	
8VP-PB	0000	RMA	Longueur effective, EL	05.4	EL + 38	Ld ~ Li + 125	
25JP	26 x 26	ISO		25,4	EL + 38	Ld ~ Li + 125	
			Quad-Power® 4 Power	Band [®]			
XPZ-PB	10 x 8			8,5	La ~ Ld + 31	Ld ~ Li + 38	
XPA-PB	13 x 10	ISO	Longueur de référence, Ld	11	La ~ Ld + 39	Ld ~ Li + 45	
XPB-PB	16 x 13			14	La ~ Ld + 42	Ld ~ Li + 60	
			Super HC® MN Power	Band [®]			
3VX-PB	10 x 10	5144		8,89	EL + 16	Ld ~ Li + 45	
5VX-PB	16 x 15	RMA	Longueur effective, EL	15,24	EL + 26	Ld ~ Li + 70	
	<u>'</u>		Super HC® PowerBa	ınd®			
SPB-PB	16 x 15			14	La ~ Ld + 38	Ld ~ Li + 60	
SPC-PB	22 x 20	ISO	Longueur de référence, Ld	19	La ~ Ld + 46	Ld ~ Li + 83	
	,		Super HC® PowerBa	ınd®	'		
3V-PB		RMA			EL + 20	Ld ~ Li + 45	
9J	10 x 10	ISO		8,89	EL + 20	Ld ~ Li + 45	
5V-PB		RMA			EL + 31	Ld ~ Li + 70	
15J	16 x 15	ISO	Longueur effective, EL	15,24	EL + 31	Ld ~ Li + 70	
8V-PB		RMA			EL + 38	Ld ~ Li + 125	
25J	26 x 26	ISO		25,4	EL + 38	Ld ~ Li + 125	
			Hi-Power® PowerBa	nd®			
В	17 x 11		THITOHOL TONCIDA		La ~ Ld + 32	Ld ~ Li + 40	
С	22 x 14	RMA	Longueur intérieure, Li	-	La ~ Ld + 42	Ld ~ Li + 58	
D	32 x 19		25.164041 III.OIIO4IO, EI		La ~ Ld + 59	Ld ~ Li + 75	
D	32 V 13				La Lu T J9	Lu ·· Li ·· 15	

STOCKAGE DES COURROIES

Parfois, une défaillance de courroie peut être attribuable à un stockage inapproprié de celle-ci qui l'a endommagée avant son installation sur la transmission. C'est pourquoi une bonne maintenance préventive ne doit pas se limiter à la transmission en elle-même, mais doit également porter sur les procédures de stockage appropriées.

Stockées correctement, les courroies de bonne qualité maintiennent leur performance et leurs dimensions. Inversement, un stockage inadapté peut diminuer la performance et changer les dimensions de vos courroies. En adoptant quelques mesures de bon sens, les courroies de bonne qualité conserveront leur aptitude initiale.

RECOMMANDE

- Les courroies doivent être stockées dans un environnement frais et sec (5 ° C à 30 ° C, humidité relative <70%), sans exposition directe à la lumière du soleil.
- Si les courroies sont empilées sur des étagères, la pile sera suffisamment réduite pour ne pas déformer les courroies de dessous.
- Il en sera de même pour les courroies en casiers.

NON RECOMMANDE

- Ne stockez pas les courroies au sol (sauf en casiers), surtout si elles risquent d'entrer en contact avec de l'eau ou tout autre liquide.
 Au sol, elles peuvent de plus être endommagées par manipulation accidentelle.
- Evitez les fenêtres (exposition au soleil et à l'humidité).
- Ne pas stocker les courroies près de radiateurs ou d'autres sources de chaleur.
- Eloignez vos courroies de transformateurs, de moteurs électriques, ou d'autres appareils électriques susceptibles de produire de l'ozone.
- Evitez la présence de dissolvants ou d'autres produits chimiques dans l'atmosphère.
- Si les courroies sont enroulées, les courbes ne seront en aucun cas inférieures au diamètre de poulie minimal recommandé pour les courbes normales ni inférieures à 1,2 fois le diamètre minimal recommandé pour les contre-courbes (enroulement sur le dos).
 Les diamètres minimaux recommandés figurent à la page 70.

STOCKAGE DES COURROIES

METHODES DE STOCKAGE DES COURROIES

Les procédures de stockage dépendent du type de courroie. Les suggestions ci-dessous vous aideront à maintenir les caractéristiques techniques initiales de tous les types de courroies.

COURROIES TRAPEZOIDALES

Les courroies trapézoïdales sont souvent stockées sur des chevilles ou crochets. Les courroies de grande longueur seront stockées sur des supports suffisamment grands (au moins le diamètre d'enroulement minimal, **voir page 70**), ou sur des chevilles en forme de croissant. Ceci supprimera tout risque de déformation des courroies sous leur propre poids. Les courroies longues peuvent être enroulées (lovées) sur elles-mêmes, assurant un stockage facile, sans risque de déformation.

COURROIES TRAPEZOIDALES MULTIPLES ET COURROIES STRIEES

Tout comme les courroies trapézoïdales, le stockage peut se faire sur des supports ou des chevilles assez larges afin de prévenir les déformations. Attention : les courroies de ce type de longueurs jusqu'à environ 3000mm sont normalement livrées enroulées sur elles-mêmes, mais il est nécessaire de les stocker en position naturelle – tout particulièrement les courroies trapézoïdales multiples.

COURROIES SYNCHRONES

Pour les courroies synchrones, des galettes sont formées en plaçant une courroie sur le flanc sur une surface plane. Ensuite, un nombre maximal de courroies est glissé à l'intérieur de la première, sans forcer. Les rayons des courbes ne seront en aucun cas inférieurs au diamètre de poulie minimal recommandé (voir page 72). Bien serrées, ces galettes peuvent être empilées sur une surface plane sans risque de déformation, jusqu'à 8 galettes de haut. Les courroies au-delà de 3000mm peuvent être enroulées et attachées pour le transport, pour autant que les rayons des courbes ne soient en aucun cas inférieurs au diamètre de poulie minimal recommandé. Vous pouvez empiler ces courroies telles quelles pour un stockage aisé. Evitez les rayons de courbure trop petits en insérant des rouleaux de carton de la taille du rayon de courbure minimal de la courroie à l'endroit où se trouve la courbure de la courroie.

COURROIES POUR VARIATEURS

Ce type de courroie est plus sensible aux déformations. Il est déconseillé de les pendre à des supports ou des chevilles. Ces courroies doivent être stockées à plat sur des étagères. D'habitude, les courroies pour variateurs sont livrées sous manchette. Il faut les stocker sur une étagère, toujours dans leur manchette. Si vous les recevez enroulées, détachez-les et stockez-les en position naturelle.

STOCKAGE DES COURROIES

INFLUENCE DU STOCKAGE DES COURROIES

Si les conditions de stockage sont respectées, on admettra que les caractéristiques mécaniques des courroies se conserveront sensiblement pendant 7 ans – ceci à une température ambiante jusqu'à 30°C, une humidité relative inférieure à 70%, et sans exposition directe aux rayons du soleil. Les conditions de stockage idéales sont comprises entre 5°C et 30°C.

Si la température ambiante dépasse les 30°C, la durée du stockage sera raccourcie, et les performances des courroies pourraient être sensiblement réduites. Les températures de stockage ne peuvent en aucun cas dépasser 46°C.

Une humidité de l'air importante peut causer l'apparition de moisissure sur la surface de courroies stockées. Bien que cela n'endommage pas gravement la courroie, cette condition est à éviter.

Pour les machines équipées de courroies qui sont entreposées ou inutilisées pendant une période prolongée (six mois ou plus), il est recommandé de relâcher la tension sur les courroies. La machine sera entreposée en respectant les conditions de stockage décrites ci-dessus. Si cela s'avère impossible, il est préférable de déposer les courroies pour les stocker séparément.

Section	Longueur de courroie (mm)	Rouleaux	Courbes
	<1500	0	1
Z, A, B; SPZ/3V;	1500-3000	1	3
XPZ/3VX ; XPA ; AX ; AA ; 3L, 4L, 5L	3000-4600	2	5
,,	>4600	3	7
	<1900	0	1
C; SPB/5V; SPC;	1900-3700	1	3
XPB/5VX; CX; BB	3700-6000	2	5
	>6000	3	7
	<3000	0	1
	3000-6100	1	3
D; CC	6100-8400	2	5
	8400-10 600	3	7
	>10 600	4	9
	<4600	0	1
	4600-6900	1	3
8V	6900-9900	2	5
	9900-12 200	3	7
	>12 200	4	9

INSTALLATION D'UNE COURROIE TRAPEZOIDALE | ETAPE PAR ETAPE

Les transmissions par courroies trapézoïdales fonctionnent plus longtemps et mieux si elles font l'objet d'un soin et d'une attention appropriés durant l'installation et, en particulier, au cours de la période de rodage de 24 heures qui suit leur mise en service. Il s'agit de la période la plus critique pour les courroies trapézoïdales. Les meilleures pratiques décrites ici vous proposent une procédure standardisée pour installer correctement une courroie trapézoïdale. Cette procédure contient des directives générales et est destinée à compléter toute documentation technique susceptible d'être fournie par le fabricant de l'équipement.

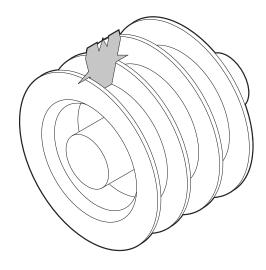
ETAPE 1 - SECURISER LA TRANSMISSION

Après avoir mis la machine hors tension, retirez le carter, isolez l'entraînement (verrouillage/étiquetage), desserrez les fixations du moteur. Poussez le moteur jusqu'à ce que la tension sur la courroie soit relâchée. Ne jamais retirer la courroie en force!

ETAPE 2 - RETIRER LES COURROIES USAGEES

Vérifier si elles présentent une usure anormale. Vérifiez si elle ne présente pas de traces d'usure anormale – sans doute symptôme de problèmes de conception ou de maintenance.

ETAPE 3 - SELECTIONNER LA COURROIE DE REMPLACEMENT CORRECTE


Consultez la section Identification des courroies (voir page 19) pour obtenir des informations sur la sélection des courroies.

ETAPE 4 - NETTOYER LES POULIES

Utilisez un tissu légèrement imbibé d'un dissolvant léger et non volatil. Eviter de projeter le solvant sur la courroie, Lors du nettoyage, éviter d'utiliser du papier de verre et de gratter la poulie avec un objet pointu. Une courroie ne doit pas être remontée avant que la poulie ne soit sèche.

ETAPE 5 - VERIFIER SI LES POULIES NE SONT PAS USEES OU ABIMEES

Les calibres pour poulies* Gates facilitent l'inspection des gorges de poulies. Si une usure supérieure à 0,4mm est détectée, remplacer la poulie. S'assurer de l'alignement correct des poulies.

(*disponibles chez Gates - page 49)

INSTALLATION D'UNE COURROIE TRAPEZOIDALE | ETAPE PAR ETAPE

ETAPE 6 - INSPECTER LES AUTRES COMPOSANTS DE LA TRANSMISSION

Contrôlez toujours les autres composants de la transmission (paliers, arbres,...): alignement, usure, lubrification,...

ETAPE 7 - MONTER UNE NOUVELLE COURROIE OU UN NOUVEAU JEU DE COURROIES

Remplacer l'intégralité des courroies sur les transmissions multiples Ne jamais mélanger des courroies anciennes avec des récentes Les courroies anciennes ne gardent pas la tension de pose de la même façon que les courroies récentes. Si vous mélangez les courroies, la charge sera supportée par les courroies neuves, ce qui conduira à l'usure prématurée de ces dernières. En outre, ne mélangez jamais des courroies provenant de différents fabricants. De par leurs caractéristiques différentes, elles sont sujettes à des défaillances prématurées.

ETAPE 8 - VERIFIER LA TENSION DES COURROIES

Ajustez l'entraxe sur l'entraînement jusqu'à ce que la tension obtenue sur le tensiomètre (*) corresponde à la valeur de tension spécifiée pour les courroies. Effectuez quelques rotations à la main pour bien engager les courroies dans les poulies et procédez à une nouvelle vérification de la tension. A ce stade, certaines courroies de grande longueur paraîtront inégales. Il est normal que des courroies de même tolérance puissent présenter des écarts de déflexion. Cet « effet caténaire » est une courbe effectuée par une corde de masse uniforme suspendue entre deux points. Cette situation s'atténuera après le rodage et la retension.

(* disponible chez Gates - page 86)

ETAPE 9 – FIXER LE MOTEUR ET APPLIQUER LE COUPLE DE SERRAGE CORRECT, PROCEDER A UNE NOUVELLE VERIFICATION DE LA TENSION

ETAPE 10 – REMONTER LE CARTER

ETAPE 11 - PERIODE DE RODAGE

Roder les courroies : faire fonctionner la transmission à plein régime. Ensuite, arrêtez-la, vérifiez la tension et faites les corrections nécessaires. Cette période de rodage assure la mise en place des courroies dans les gorges des poulies.

Si possible, laisser la transmission fonctionner pendant environ 24 heures. Même pendant une nuit, ou pendant une pause-repas : c'est toujours mieux que rien. Cette période de rodage réduira le besoin de retension. Pour autant qu'elles soient installées correctement à la tension spécifiée par Gates, les courroies trapézoïdales de qualité supérieure Quad-Power® 4 et Predator® de Gates ne nécessitent pas de période de rodage.

ETAPE 12 - DEMARRAGE

Au démarrage, procédez à une vérification visuelle et auditive pour détecter d'éventuelles vibrations ou nuisances sonores inhabituelles. Pour ce faire, il convient d'arrêter la machine et de vérifier les roulements ainsi que le moteur. Si des températures élevées sont mesurées, la tension de courroie est peut-être trop élevée. Il se peut aussi que le roulement soit désaligné ou mal lubrifié.

INSTALLATION D'UNE COURROIE SYNCHRONE | ETAPE PAR ETAPE

Si elles font l'objet d'un soin et d'une attention appropriés durant l'installation, les transmissions par courroies synchrones offrent une multitude d'avantages en termes d'entretien qui vous aident, jour après jour, à réduire le nombre d'interventions sur vos équipements et à maintenir le temps d'immobilisation au niveau le plus bas.

Les meilleures pratiques décrites ici vous proposent une procédure standardisée pour installer correctement une courroie synchrone. Cette procédure contient des directives générales et est destinée à compléter toute documentation technique susceptible d'être fournie par le fabricant de l'équipement.

ETAPE 1 – SECURISER LA TRANSMISSION

Après avoir mis la machine hors tension, isolé l'entraînement (verrouillage/étiquetage) et retiré le carter, desserrez les fixations du moteur. Poussez le moteur jusqu'à ce que la tension sur la courroie soit relâchée. Ne jamais retirer la courroie en force!

ETAPE 2 - RETIRER LA COURROIE USAGEE

Vérifier si elle présente une usure anormale. Vérifiez si elle ne présente pas de traces d'usure anormale – sans doute symptôme de problèmes de conception ou de maintenance.

ETAPE 3 - SELECTIONNER LA COURROIE DE REMPLACEMENT CORRECTE

Consultez la section Identification des courroies (voir page 19) pour obtenir des informations sur la sélection des courroies.

ETAPE 4 - NETTOYER LES POULIES

On peut nettoyer les poulies avec un tissu légèrement imbibé d'un dissolvant léger et non volatil. Lors du nettoyage, éviter d'utiliser du papier de verre et de gratter la poulie avec un objet pointu. Une courroie ne doit pas être remontée avant que la poulie ne soit sèche.

ETAPE 5 - INSPECTER LES POULIES

Inspectez visuellement si les poulies ne présentent pas de traces d'usure anormale ou excessive. En outre, vérifiez toujours l'alignement des poulies – l'alignement correct est essentiel pour ce qui concerne les transmissions par courroies synchrones.

ETAPE 6 - INSPECTER LES AUTRES COMPOSANTS DE LA TRANSMISSION

Contrôlez toujours les autres composants de la transmission (paliers, arbres,...): alignement, usure et lubrification.

ETAPE 7 – MONTER UNE NOUVELLE COURROIE SUR LES POULIES

Ne montez jamais les courroies en force sur les poulies. N'utilisez pas de force excessive pour installer des courroies.

ETAPE 8 - VERIFIER LA TENSION DES COURROIES

Ajustez l'entraxe sur l'entraînement jusqu'à ce que la tension obtenue sur le tensiomètre (*) corresponde à la valeur de tension spécifiée pour la courroie. Effectuez quelques rotations à la main et procédez à une nouvelle vérification de la tension. Pendant l'entraînement, vérifiez l'alignement de la courroie. La courroie ne doit pas dépasser le bord de poulies sans flasque ou frotter contre le bord intérieur de poulies flasquées, et si l'un ou l'autre de ces deux scénarios se produit, l'alignement de l'entraînement doit être amélioré afin que la courroie en rotation reste sur les poulies. Si l'alignement de l'entraînement doit être réajusté, la tension de la courroie doit être vérifiée à nouveau.

(*) disponible chez Gates - page 86)

INSTALLATION D'UNE COURROIE SYNCHRONE | ETAPE PAR ETAPE

ETAPE 9 – FIXER LE MOTEUR ET APPLIQUER LE COUPLE DE SERRAGE CORRECT, PROCEDER A UNE NOUVELLE VERIFICATION DE LA TENSION

Il est très important de bien fixer tous les composants de la transmission car toute variation d'entraxe affectera les performances de la courroie.

ETAPE 10 - DEMARRAGE

Normalement, les courroies synchrones ne requièrent pas de retension. Nous recommandons néanmoins d'observer la transmission pendant le démarrage. Procédez à une vérification visuelle et auditive pour détecter d'éventuelles vibrations ou nuisances sonores inhabituelles et, le cas échéant, arrêtez la transmission et recherchez les causes potentielles.

VERIFICATION DE LA TENSION DE LA COURROIE | ETAPE PAR ETAPE

Une tension de courroie trop faible ou trop élevée peut provoquer des problèmes de transmission par courroie. Si les courroies trapézoïdales sont sous-tendues, elles peuvent patiner. Le patinage génère de la chaleur et provoquera des craquelures et une défaillance de la courroie. Si les courroies synchrones sont sous-tendues, elles peuvent sauter des dents, provoquant ainsi une perte de synchronisation. Pour les courroies synchrones comme pour les courroies trapézoïdales, une tension trop élevée raccourcira la durée de vie de la courroie en raison d'un étirement excessif de la corde de traction et d'une usure accélérée. Dès lors, la tension correcte d'une courroie dans une transmission – qu'il s'agisse d'une courroie trapézoïdale ou d'une courroie synchrone – est primordiale.

OUTILS POUR VOUS AIDER A VERIFIER LA TENSION DES COURROIES

S'assurer de la tension correcte d'une courroie peut paraître une tâche complexe, mais en réalité, c'est tout le contraire. Gates propose des outils faciles à utiliser pour faciliter la mesure de la tension : Tensiomètre sonique modèle 508C et tensiomètres traditionnels de Gates mesurant la tension en fonction de la force/déflexion.

Tensiomètre sonique modèle 508C - page 86

Tensiomètre simple/double - page 86

VERIFICATION DE LA TENSION DE LA COURROIE | METHODE DE VIBRATION DE LA PORTEE

Le tensiomètre sonique de Gates peut être utilisé avec toutes les courroies Gates. Le tensiomètre sonique mesure les vibrations dans la portée de la courroie et convertit cette mesure en une lecture de la tension statique réelle de la courroie. Le tensiomètre portatif, alimenté par piles, est fourni avec un capteur flexible qui s'installe rapidement.

Tensiomètre sonique modèle 508C - page 86

Remarque importante : mettez toujours la transmission à l'arrêt avant d'utiliser le tensiomètre sonique 508C. Le tensiomètre sonique de Gates n'est pas certifié pour l'utilisation dans des endroits présentant un risque d'explosion.

ETAPE 1 - ENTRER LES DONNEES

Entrez la masse de la courroie (fournie avec le manuel d'utilisation), la largeur de la courroie pour les courroies synchrones ou le nombre de brins pour les courroies trapézoïdales, et la portée de la courroie (fournie par le logiciel Gates) sur le clavier. Ces données restent mémorisées dans l'appareil, même après l'avoir éteint.

ETAPE 2 - POSITIONNER L'EXTREMITE MICRO

Tenez le micro du capteur flexible environ 10mm au-dessus de la courroie et au centre de la portée, appuyez sur le bouton « Mesurer » et frottez légèrement la courroie pour la faire vibrer.

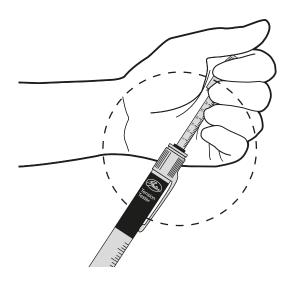
ETAPE 3 - DETERMINER LA TENSION STATIQUE

L'ordinateur mesure la fréquence au moyen des variations des pressions sonores produites par la courroie et calcule la tension. La valeur de tension est affichée en Newton. Il est également possible d'afficher les résultats en Hertz.

ETAPE 4 - VERIFIER LA TENSION RECOMMANDEE

Puisque la méthode de vibration de la portée est conçue pour être une méthode très précise de mesure de la tension réelle d'une courroie, il est important de calculer la tension recommandée appropriée de la transmission par courroie spécifique. Pour déterminer la tension de courroie recommandée pour des applications de transmission spécifiques, téléchargez le logiciel de sélection de transmissions par courroies DesignFlex® Pro™ de Gates sur www.gates.com/drivedesign. Vous pouvez également contacter les ingénieurs d'application des produits de transmission de puissance Gates à l'adresse pteusupport@gates.com, ou l'ingénieur d'application local pour leur soumettre des questions supplémentaires sur la tension des courroies.

VERIFICATION DE LA TENSION DE LA COURROIE | METHODE DE MESURE DE LA FORCE DE DEFLEXION



La méthode de mesure de la tension par la force de déflexion ne mesure pas directement la tension de la portée de la courroie ou la tension statique. La force de déflexion est une valeur calculée basée sur la tension statique requise dans la courroie. La tension statique est la force de tension qui se trouve réellement dans la courroie, tandis que la force de déflexion est simplement une mesure visant à vérifier la valeur de la tension statique dans la courroie.

Les tensiomètres utilisés pour la méthode de tension par la force de déflexion sont disponibles en configuration simple ou double. Le tensiomètre simple peut mesurer jusqu'à une force de \pm 120N/15kg; Le tensiomètre double peut mesurer jusqu'à une force de \pm 300N/30kg; Il s'agit d'additionner la valeur de force indiquée par chaque échelle de graduations pour déterminer la force totale mesurée.

Tensiomètre simple/double - page 86

ETAPE 1 – POSITIONNER LE PLUS BAS DES DEUX JOINTS TORIQUES A LA DISTANCE DE DEFLEXION FOURNIE PAR LE LOGICIEL GATES POUR LES REGLAGES DE TENSION DE LA COURROIE MESUREE

ETAPE 2 - FLECHIR LA COURROIE

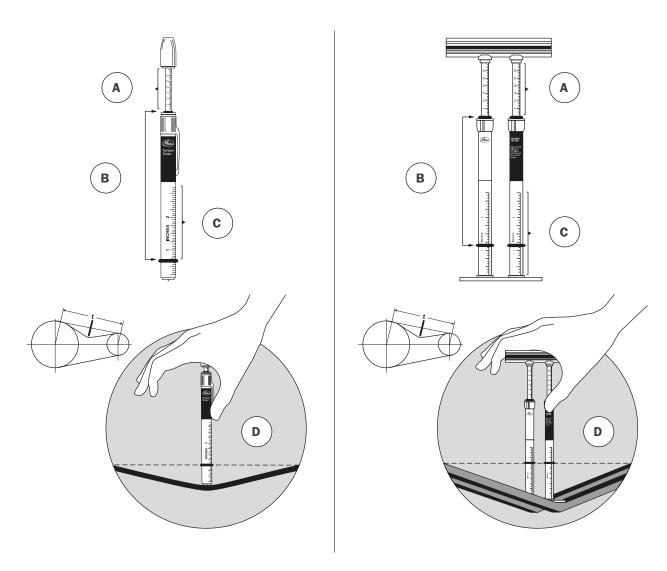
Placez le tensiomètre Gates au centre et perpendiculairement à la portée de la courroie. Si la courroie est une courroie synchrone large ou une courroie PowerBand®, insérez une plaque entretoise sur la largeur de la courroie et fléchissez toute la largeur de la courroie uniformément.

Exercez une pression suffisante sur le tensiomètre pour faire fléchir la courroie jusqu'à ce que le joint torique inférieur soit à la bonne distance de déflexion. Si plusieurs courroies trapézoïdales individuelles sont utilisées dans la transmission, la distance de déflexion peut être mesurée par rapport à une courroie adjacente. Pour les transmissions à une seule courroie, utilisez une règle ou une ficelle tendue entre les poulies, ou le dessus de la courroie pour définir une ligne de référence.

Lorsque la courroie est fléchie, déterminez la distance de déflexion en mesurant depuis la courroie jusqu'à la règle ou la ligne de référence de la ficelle

ETAPE 3 - DETERMINER LA FORCE DE DEFLEXION

Trouvez la valeur de la force de déflexion sur l'échelle supérieure du tensiomètre. Le joint torique coulissant en caoutchouc coulisse sur l'échelle tandis que l'outil se comprime, et reste au niveau atteint pour permettre d'y lire la force de déflexion. Lisez la mesure juste en dessous du joint. Ne pas oublier de repositionner le joint vers le bas avant de procéder à une nouvelle mesure. Lisez la mesure juste en dessous des joints toriques si vous utilisez le tensiomètre double et faites la somme de ces deux mesures.


ETAPE 4 - VERIFIER LES FORCES DE TENSION MIN./MAX.

Idéalement, les forces de tension de l'installation seront calculées pour chaque transmission spécifique. Les calculs de tension sont intégrés dans le logiciel de conception et de sélection de transmissions de Gates Design Flex® Pro™, qui peut être utilisé pour calculer rapidement les tensions d'installation appropriées. Design Flex® Pro™ et Design Flex Web® sont disponibles à l'adresse www.gates.com/drivedesign.

Comparez la force de déflexion à la plage de forces recommandées. Si la force de déflexion est inférieure à la valeur minimale recommandée, les courroies sont insuffisamment tendues et doivent être resserrées. En revanche, si la force de déflexion est supérieure à la valeur maximale recommandée, les courroies sont trop tendues et doivent être desserrées.

VERIFICATION DE LA TENSION DE LA COURROIE | METHODE DE MESURE DE LA FORCE DE DEFLEXION

- A. Echelle de mesure de la force de déflexion
- B. Joints toriques coulissants en caoutchouc
- C. Echelle de mesure de la distance de déflexion (lire de bas en haut)
- D. Il vous suffit ensuite de lire la mesure sous le joint torique. Replacez le joint torique vers le bas pour une nouvelle utilisation

VERIFICATION DE LA TENSION DE LA COURROIE | METHODE D'ALLONGEMENT

Lorsque la section transversale et le nombre de courroies individuelles deviennent si importants qu'une tension par déflexion ne peut raisonnablement être réalisée, une autre méthode sera utilisée.

Cette autre méthode de vérification de la tension de la PowerBand® est la méthode dite de l'allongement. Le principe est simple. Chaque valeur de tension correspond à un allongement donné. Par conséquent, l'allongement d'une PowerBand® lorsqu'elle est installée et tendue sur une transmission constitue une mesure de la tension statique dans la courroie.

Déterminez la valeur d'allongement de la courroie (sur la transmission) pour obtenir la tension.

Remarque importante : si vous retendez une transmission usagée, donnez du mou à la transmission jusqu'à ce qu'il n'y ait plus de tension, puis mesurez la circonférence extérieure de la courroie alors qu'elle se trouve encore sur la transmission.

ETAPE 1 - MESURER LA COURROIE

Mesurez la circonférence extérieure de la courroie sans tension. Ceci peut être réalisé avec la courroie sur ou hors de la transmission.

ETAPE 2 – DETERMINER LE COEFFICIENT MULTIPLICATEUR DE LONGUEUR DE COURROIE

Déterminez le coefficient multiplicateur de longueur de la courroie correct à partir du tableau ci-dessous pour chacune des tensions statiques que vous avez calculées.

ETAPE 3 - CALCULER LA CIRCONFERENCE EXTERIEURE ALLONGEE

Multipliez la circonférence extérieure mesurée de la courroie PowerBand® par chacun des coefficients multiplicateurs de longueur. Vous obtenez la circonférence extérieure allongée de la PowerBand® correspondant à chacune des tensions calculées.

Tension minimale = Ts

Tension maximale = 1,5 x Ts

Section	Туре	Module lb/in/in			
Predator® SPBP	PowerBand®	75 000			
Predator® SPCP	PowerBand®	150 000			

Ts (N)	SPBP / 5VP	Predator® SPCP			
300	1,000899	1,000450			
350	1,001049	1,000524554			
400	1,001199	1,00059949			
450	1,001349	1,000674427			
500	1,001499	1,000749363			
550	1,001649	1,000824299			
600	1,001798	1,000899236			
650	1,001948	1,000974172			
700	1,002098	1,001049108			
750	1,002248	1,001124045			
800	1,002398	1,001198981			
900	1,002698	1,001348854			
1000	1,002997	1,001498726			
1200	1,003597	1,001798471			

Ts (N)	SPBP / 5VP	Predator® SPCP			
1400	1,004196	1,002098217			
1600	1,004796	1,002397962			
1800	1,005395	1,002697707			
2000	1,005995	1,002997452			
2250	1,006744	1,003372134			
2500	1,007494	1,003746815			
2750	1,008243	1,004121497			
3000	1,008992	1,004496178			
3250	1,009742	1,00487086			
3500	1,010491	1,005245542			
3750	1,011240	1,005620			
4000	1,011990	1,005994905			
4250	1,012739	1,006370			
4500	1,013489	1,006744268			
4750	1,014238	1,007118949			
5000	1,014987	1,007493631			
5250	1,015737	1,007868312			
5500	1,016486	1,008242994			
6000	1,017985	1,008992357			

VERIFICATION DE LA TENSION DE LA COURROIE | METHODE D'ALLONGEMENT

COEFFICIENTS MULTIPLICATEURS DE LONGUEUR DE COURROIE POUR POWERBAND®

Ts (N)	3V / 9J	SPB / 5V (15J)	SPC	8V (25J)	зvх	5VX	A	В		С		
								< 3250	> 3250	< 3250	> 3250	D
300	1,00821				1,00613							
350	1,00957				1,00715							
400	1,01094				1,00817							
450	1,01231	1,00532			1,00919	1,00337	1,00481					
500	1,01367	1,00591			1,01021	1,00374	1,00535					
550	1,01504	1,00650			1,01124	1,00412	1,00588					
600	1,01641	1,00709	1,00481		1,01226	1,00449	1,00642	1,00562	1,00674			
650	1,01778	1,00769	1,00515		1,01328	1,00487	1,00695	1,00608	1,00730			
700	1,01915	1,00828	1,00549	1,00449	1,01430	1,00524	1,00749	1,00655	1,00786	1,00393	1,00524	
750	1,02051	1,00887	1,00584	1,00481	1,01532	1,00561	1,00802	1,00702	1,00843	1,00421	1,00561	
800	1,02188	1,00946	1,00618	1,00513	1,01634	1,00599	1,00856	1,00749	1,00899	1,00449	1,00599	1,00310
900	1,02462	1,01064	1,00686	1,00578	1,01839	1,00674	1,00963	1,00843	1,01011	1,00505	1,00674	1,00348
1000	1,02735	1,01183	1,00754	1,00642	1,02043	1,00749	1,01070	1,00936	1,01124	1,00562	1,00749	1,00387
1200		1,01419	1,00891	1,00770		1,00899	1,01284	1,01124	1,01348	1,00674	1,00899	1,00465
1400		1,01656	1,01028	1,00899		1,01049	1,01498	1,01311	1,01573	1,00786	1,01049	1,00542
1600		1,01893	1,01164	1,01027		1,01198		1,01498	1,01798	1,00899	1,01198	1,00620
1800		1,02129	1,01301	1,01156		1,01348		1,01686	1,02023	1,01011	1,01348	1,00697
2000		1,02366	1,01438	1,01284		1,01498		1,01873	1,02248	1,01124	1,01498	1,00775
2250		1,02662	1,01608	1,01445		1,01685		1,02107	1,02529	1,01264	1,01685	1,00872
2500		1,02957	1,01779	1,01605		1,01873		1,02341	1,02810	1,01405	1,01873	1,00968
2750			1,01950	1,01766						1,01545	1,02060	1,01065
3000			1,02121	1,01926						1,01686	1,02247	1,01162
3250			1,02292	1,02087						1,01826	1,02435	1,01259
3500			1,02462	1,02247						1,01967	1,02622	1,01356
3750			1,02633	1,02408						1,02107	1,02809	1,01453
4000			1,02804	1,02569						1,02248	1,02997	1,01550
4250			1,02975	1,02729						1,02388	1,03184	1,01647
4500			1,03146	1,02890						1,02529	1,03371	1,01744
4750			1,03316	1,03050						1,02669	1,03559	1,01840
5000			1,03487	1,03211						1,02810	1,03746	1,01937
5250				1,03371								1,02034
5500				1,03532								1,02131
6000				1,03853								1,02325

INSTALLATION DES COURROIES ET DES POULIES

INSTALLATION DE LA POULIE | ETAPE PAR ETAPE

Veiller à une bonne installation et à un alignement correct des poulies. Assembler les différentes pièces des poulies et serrer les boulons et les vis selon les recommandations en vigueur.

Les poulies sont généralement fixées à l'arbre à l'aide d'un moyeu conique parfaitement adapté à l'alésage conique correspondant de la poulie. Ce type de système se compose d'un moyeu, d'une poulie et souvent d'un jeu de vis et d'une clé. Les moyeux existent en plusieurs diamètres, ce qui vous permet de réduire le stock de pièces, étant donné qu'un moyeu peut être utilisé avec des poulies de tailles différentes.

MOYEUX CONIQUES

Lors de l'installation, insérer le moyeu dans la poulie. S'assurer que les orifices (et non les filetages) correspondent avant de faire coulisser l'unité sur l'arbre. Placer les vis dans les orifices taraudés de la poulie. Aligner les poulies et serrer les vis. Le moyeu étant enfoncé vers l'intérieur, il se lie avec l'arbre.

N° de moyeu	Couple de serrage des vis (Nm)
1008	5,6
1118	5,6
1220	20,0
1225	20,0
1330	20,0
1660	20,0
1665	20
2002	30
2557	50,0
2555	50
3000	90,0
3000	90
3555	115,0
3555	115
4000	170,0
4000	170,0
4555	190,0
4555	190,0
5000	270,0
5000	270,0

ALIGNEMENT DES POULIES

Le bruit, l'usure des poulies, des courroies et des roulements, les vibrations et, finalement le temps d'immobilisation de la machine peuvent être causés par un désalignement des poulies. Des poulies correctement alignées présentent bon nombre d'avantages :

- Diminution de la consommation d'énergie;
- Diminution de l'usure ou de la détérioration des poulies, des courroies et des roulements;
- Moins de bruit et de vibrations ;
- Augmentation de la durée de vie des courroies, des poulies et des roulements;
- Fiabilité accrue de l'ensemble de la transmission par courroie.

Par conséquent, l'alignement correct des poulies est un élément majeur de l'installation et de la maintenance préventive des transmissions par courroies. En règle générale, l'écart d'alignement de la poulie sur les transmissions par courroies trapézoïdales ne devrait pas dépasser 1/2° ou 5mm pour 500mm d'entraxe. L'alignement des transmissions à courroies Polyflex® et Micro-V® ne peut pas dépasser 1/4° ou 2,5mm par 500mm d'entraxe.

Les risques d'instabilité, d'usure et de retournement de la courroie augmentent proportionnellement au degré de désalignement.

Déport max. sur l'alignement		n d'entraxe Ismission
des poulies	(°)	(mm)
Courroies trapézoïdales	1/2	5
Polyflex®	1/4	2,5
Micro-V®	1/4	2,5
Courroies synchrones	1/4	2,5

Les valeurs maximales d'écart données représentent le total admissible pour le désalignement angulaire et parallèle.

Si une poulie présente des signes évidents d'usure ou de dommages, elle devra être remplacée.

Outil d'alignement LASER AT-1 - page 87

PERFORMANCE DE LA TRANSMISSION PAR COURROIE

AMELIORATION DE LA PERFORMANCE DE LA TRANSMISSION

Pour assurer l'entretien correct de votre transmission, il vous faut connaître les caractéristiques et le fonctionnement de vos installations. Vous connaissez peut-être les capacités et les limites de votre équipement, mais savez-vous comment votre transmission par courroie contribue à ces niveaux de performance ?

Il est parfois nécessaire de réfléchir à la durée de vie de la courroie. La durée de vie ne répond pas à vos attentes et vous voulez améliorer cette situation. Ou la durée de vie est conforme à vos attentes, mais vous désirez réduire la maintenance et les temps d'arrêt. Ceci peut être réalisé par une mise à niveau des transmissions par courroie existantes.

Le premier pas d'une mise à niveau d'une transmission par courroie est de trouver quelles sont les petites améliorations de faible coût qui pourront être faites. Ceci implique aussi une vérification de la conception de la transmission.

Voici quelques possibilités:

- Corriger la tension de la courroie;
- Augmenter le diamètre des poulies ;
- Augmenter le nombre de courroies ou utiliser des courroies d'autres sections ;
- Ajouter un système qui limite les vibrations ;
- Réduire la température de fonctionnement par une amélioration de la ventilation du carter ;
- Veiller à ce que les diamètres des poulies et des galets extérieurs dépassent les diamètres minimaux recommandés ;
- Remplacer les courroies de grande consommation par des courroies de haute qualité;
- Remplacer les poulies usées ;
- Maintenir l'alignement correct des poulies ;
- Toujours placer le galet tendeur sur le brin ayant la tension la plus basse, également appelée « longueur à vide » lorsque la transmission fonctionne :
- Retendre les courroies trapézoïdales standard 24 h après le premier montage ;
- Veiller à ce que l'installation et la maintenance soient effectuées selon les recommandations.

Si les performances de votre transmission laissent toujours à désirer, l'étape suivante est de passer à un système de transmission plus performant. Votre distributeur local ou représentant Gates vous assistera dans l'amélioration de votre système de transmission, afin de réduire les frais de maintenance et les temps d'arrêt.

Il se peut que vous ayez des difficultés ou des frais de maintenance excessifs avec une transmission sans courroies, par exemple un système à engrenages ou à chaînes. Consultez votre représentant Gates afin d'étudier si une transmission par courroies peut ou non solutionner vos problèmes et réduire vos coûts d'entretien.

PERFORMANCE DE LA TRANSMISSION PAR COURROIE

AMELIORATION DE PERFORMANCES DE TRANSMISSION INSUFFISANTES ET DE PROBLEMES DE BRUIT

Une transmission par courroies bien conçue, installée et entretenue ne nécessitera que très peu de surveillance. Malgré toutes vos précautions, des détériorations accidentelles sont toujours possibles, altérant la configuration de la transmission. Si vous modifiez les charges ou les conditions environnantes, la transmission peut aussi s'en trouver modifiée. Le guide de dépannage en page 47 vous aidera à identifier vos problèmes de transmission, tout en vous donnant les moyens d'y remédier.

Tous les types de transmission génèrent du bruit en transmettant la puissance et chaque type de système a son propre son caractéristique. Les transmissions par courroies synchrones sont beaucoup plus silencieuses que les transmissions par chaînes à rouleaux et les transmissions par courroies trapézoïdales sont généralement les plus silencieuses. Lorsque le bruit est un problème, plusieurs conseils de conception et d'entretien peuvent être suivis pour diminuer au maximum le bruit d'une transmission par courroie.

BRUIT: DECIBELS ET FREQUENCE

- Le bruit est un son indésirable ou désagréable qui peut être décrit selon deux critères : la fréquence et les niveaux de décibels (dBA). La fréquence est mesurée en hertz. L'oreille humaine est généralement capable de distinguer des fréquences de 20 à 20000 hertz. L'oreille humaine ne perçoit généralement pas les fréquences supérieures à 20000 hertz.
- Le niveau ou l'intensité du bruit est mesuré en décibels (dBA). Le décibel est devenu l'unité de mesure de base puisqu'il s'agit d'une mesure objective qui correspond approximativement à la mesure subjective faite par l'oreille humaine. Etant donné que le son est composé de plusieurs parties distinctes et mesurables, et que l'oreille humaine ne fait pas la différence entre ces parties, des échelles de mesure qui se rapprochent de la réaction de l'oreille humaine ont été adoptées. Trois échelles A, B et C sont utilisées pour dupliquer la réponse de l'oreille à travers les plages de l'échelle. L'échelle A est la plus couramment utilisée dans l'industrie en raison de son adoption comme norme dans les règlements de l'OSHA.
- Le bruit décrit en décibels (dBA) est généralement perçu comme le volume ou l'intensité du bruit.
- Si l'oreille humaine est capable de distinguer des fréquences de 20 à 20000 hertz, l'oreille est plus sensible dans la plage normale de la parole, soit de 500 à 2000 hertz. Par conséquent, cette plage est la préoccupation la plus courante en matière d'insonorisation. La fréquence est plus étroitement liée à ce que l'oreille perçoit comme étant la hauteur tonale. Les sons de haute fréquence sont perçus comme perçants ou bourdonnants, tandis que les sons de basse fréquence sont perçus comme des grondements.
- La combinaison des décibels et de la fréquence décrit le niveau de volume global pour l'oreille humaine. Utiliser l'un sans l'autre ne permet pas de décrire adéquatement le potentiel de volume du bruit. Par exemple, un bruit de 85 dBA à 3000 hertz sera perçu comme beaucoup plus fort qu'un bruit de 85 dBA à 500 hertz.

A titre de comparaison, des niveaux de bruit typiques et leurs sources sont énumérés ci-dessous.

Parole normale	60 dBA
Bureau en activité	80 dBA
Usine de tissage textile	
Usine de mise en conserve	
Circulation urbaine dense	100 dBA
Presse mécanique	110 dBA
Sirène de raid aérien	
Moteur à réaction	

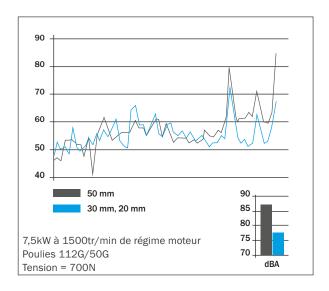
REDUCTION DU BRUIT

 Suivre des procédures d'installation et d'entretien appropriées, ainsi que certaines alternatives de conception simples peuvent réduire le bruit des transmissions par courroies.

TENSION ET ALIGNEMENT DE LA TRANSMISSION PAR COURROIE

- La tension et l'alignement corrects d'une transmission par courroie permettent à cette transmission de fonctionner le plus silencieusement possible.
- Les transmissions par courroies trapézoïdales incorrectement tendues peuvent patiner et crisser.
- Une tension incorrecte dans les transmissions par courroies synchrones peut affecter la façon dont la courroie s'insère dans les gorges des poulies. Une tension adéquate minimise l'interférence « dent à gorge » et réduit ainsi le bruit de la courroie. Vérifiez la tension correcte des transmissions à l'aide des tensiomètres de Gates.

PERFORMANCE DE LA TRANSMISSION PAR COURROIE


AMELIORATION DE PERFORMANCES DE TRANSMISSION INSUFFISANTES ET DE PROBLEMES DE BRUIT

■ Les transmissions par courroies trapézoïdales mal alignées seront plus bruyantes que les transmissions correctement alignées car des interférences sont créées au point d'entrée de la courroie dans la poulie. Les transmissions par courroies synchrones mal alignées ont tendance à être beaucoup plus bruyantes que les transmissions correctement alignées en raison des niveaux d'interférence encore supérieurs créés entre les dents de la courroie et les gorges des poulies. Les transmissions par courroies synchrones mal alignées peuvent provoquer le frottement violent du bord de la courroie contre le flasque d'une poulie. Un désalignement causant le contact de la courroie avec un flasque génère un bruit facilement détectable. Pour vérifier et corriger l'alignement, suivez les directives décrites dans la section « Installation » de ce manuel.

COURROIES SYNCHRONES FRACTIONNEES

 Les courroies larges peuvent être découpées en 2 ou 3 courroies plus étroites, de préférence de largeurs inégales, ce qui permet souvent une réduction de bruit significative.

ECRANS ANTIBRUIT ET ABSORBEURS DE BRUIT

- Parfois, même des transmissions par courroie correctement alignées et tendues peuvent être trop bruyantes pour un environnement de travail. Le cas échéant, des mesures peuvent être prises pour modifier le carter de la transmission de manière à réduire les niveaux de bruit.
- Des écrans antibruit sont utilisés pour bloquer et réfléchir le bruit. Les écrans antibruit n'absorbent pas ou n'amortissent pas le bruit; ils bloquent le bruit et réfléchissent généralement la majeure partie du bruit vers son point d'origine. Les écrans antibruit de qualité sont denses et ne doivent pas vibrer. Un carter de courroie en tôle métallique constitue un écran antibruit. Plus la protection est complète (boîtier), plus elle sera efficace comme écran antibruit. Les carters de courroie écrans antibruit peuvent être aussi sophistiqués qu'un boîtier complètement fermé, ou aussi simples qu'une tôle métallique venant recouvrir l'avant du carter pour prévenir la transmission directe du son. Selon l'application, on veillera à ce que les mesures d'insonorisation mises en œuvre ne nuisent pas aux performances de la courroie, à savoir en augmentant à ce point la température dans la zone protégée que la construction de la courroie s'en trouve affectée.
- Les absorbeurs de bruit sont utilisés pour réduire les réflexions du bruit et pour dissiper l'énergie sonore. Les absorbeurs de bruit doivent être utilisés en combinaison avec un écran antibruit. Les absorbeurs de bruit sont communément appelés isolation acoustique. L'isolation acoustique (l'absorbeur de bruit) est utilisée à l'intérieur des carters de courroie (l'écran antibruit) lorsque c'est nécessaire. Une grande variété de fabricants d'isolants acoustiques peuvent fournir des produits adaptés à des applications variées.
- La combinaison d'un écran antibruit (carter de courroie solide) et d'un absorbeur de bruit (isolation acoustique) permet d'obtenir la plus grande réduction du bruit de la transmission par courroie. Bien qu'il soit impossible de prévoir la réduction du bruit obtenue, l'expérience sur le terrain a montré que les niveaux sonores peuvent être réduits de 10 à 20 dBA en utilisant des carters de courroie complets munis d'une isolation acoustique.

4. COMMENT GARANTIR UN **PROGRAMME** MAINTENANCE PREVENTIVE **EFFICACE**

MAINTENANCE PREVENTIVE

INSPECTION DE LA TRANSMISSION: QUAND ET A QUELLE FREQUENCE

Il n'est pas toujours aisé de décider du moment et de la fréquence des inspections ou des remplacements des transmissions par courroies. L'usure et la durée de vie de la courroie dépendent de différents facteurs, et notamment de la transmission d'origine, de l'alignement des poulies, de la tension d'installation, des pratiques de maintenance et des facteurs environnementaux.

Bien sûr, votre expérience personnelle vous guidera quant à la nécessité de vérifier vos transmissions. Les transmissions critiques et celles sujettes à des vitesses élevées, à des charges importantes, à des démarrages/arrêts fréquents et/ou à des températures très élevées nécessiteront des contrôles plus fréquents.

QUAND PLANIFIER UNE INSPECTION NECESSITANT UN ARRET COMPLET

- Les transmissions équipées de courroies trapézoïdales standard doivent être inspectées tous les 3 mois (retendre si nécessaire).
- Transmissions équipées de courroies synchrones Gates et de courroies trapézoïdales de haute qualité Gates :
 - Les courroles synchrones Gates ne nécessitent aucun entretien pendant leur durée de vie, à condition qu'elles soient installées conformément aux spécifications de Gates.
 - Les courroies trapézoïdales de haute qualité Gates Quad-Power® 4 et Predator® sont sans entretien et ne nécessitent aucun entretien pendant leur durée de vie, à condition qu'elles soient installées conformément aux spécifications de Gates. Une inspection visuelle annuelle est recommandée pour vérifier l'état général de la transmission.

MAINTENANCE PREVENTIVE DE ROUTINE

INSPECTION RAPIDE DES TRANSMISSIONS

Une transmission par courroies industrielles correctement conçue et bien entretenue peut fonctionner, dans des circonstances normales, pendant de nombreuses années. Intégrer une inspection périodique de la transmission par courroie dans le cadre de la routine de maintenance est une bonne façon d'entamer un programme de maintenance préventive. Ces inspections visuelles et auditives rapides ont pour objectif de vérifier l'état général de la transmission et de repérer les éventuelles irrégularités.

VERIFICATION VISUELLE ET AUDITIVE

Procéder à une vérification visuelle et auditive pour détecter d'éventuelles vibrations ou nuisances sonores inhabituelles durant l'inspection de la transmission (protégée) en fonctionnement. Une transmission bien conçue et entretenue fonctionnera silencieusement et sans heurt.

INSPECTION DU CARTER

Vérifier que le carter de protection n'est ni abîmé, ni desserré. Veiller également à ce qu'il soit exempt de saletés. Dans le cas contraire, l'accumulation de particules dans le carter de protection formera une barrière d'isolation pouvant conduire à la surchauffe de la transmission. En outre, la température constitue un facteur essentiel en matière de performances et de durabilité de la courroie. Une température inappropriée pourrait fortement réduire la durée de vie du composant. Une augmentation de la température ambiante d'environ 20°C au-dessus de la température maximale de fonctionnement d'une courroie réduit généralement de moitié la durée de vie de la courroie.

HUILE ET GRAISSE

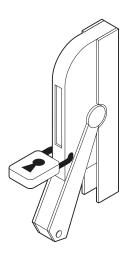
Vérifier également l'absence d'écoulement d'huile ou de graisse du carter de protection, pouvant découler d'une lubrification des roulements trop importante. L'huile et la graisse attaquent les composants en caoutchouc, lesquels gonflent et se déforment. Par conséquent, la courroie risque de se rompre prématurément.

FIXATIONS

Enfin, vérifier que les fixations du moteur sont bien serrées. Vérifier si les glissières de réglage et de rattrapage sont propres et correctement lubrifiées.

ARRET COMPLET POUR INSPECTION

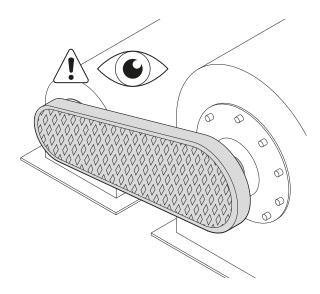
MAINTENANCE PREVENTIVE ETAPE PAR ETAPE


L'inspection minutieuse de la transmission par courroie devrait également être intégrée à un programme de maintenance préventive plus vaste. Il convient de procéder à un arrêt complet de la transmission afin de mener une inspection minutieuse des courroies, des poulies et des autres composants de la transmission en vue d'identifier des signes éventuels de rupture imminente pour ainsi remplacer les composants avant qu'ils ne tombent en panne.

Voici une liste des points à vérifier pour procéder à un arrêt complet pour inspection efficace et sécurisé :

ETAPE 1 - SECURISER LA TRANSMISSION

Mettre l'entraînement hors tension, isoler l'entraînement (verrouillage/étiquetage).


Placer tous les composants de la machine en position neutre (sécurisée). Tout composant pouvant entrer en mouvement par inadvertance durant la procédure doit également être sécurisé pour éviter un tel déplacement (par ex., les hélices du ventilateur en roue libre).

ETAPE 2 - INSPECTER LE CARTER

Retirer le carter de protection pour procéder à son inspection. Contrôler les signes d'usure ou les traces de frottement éventuelles contre les composants de la transmission. Nettoyer le carter de protection pour éviter qu'il ne se transforme en une barrière d'isolation hermétique.

Nettoyer la graisse ou l'huile provenant de paliers trop lubrifiés.

ETAPE 3 - INSPECTER LA COURROIE

S'assurer de l'absence de signes d'usure ou de dommages sur la/les courroie(s). Marquer la courroie (ou l'une des courroies sur une courroie multibrins). Procéder à l'inspection de l'intégralité de la/des courroie(s), à la recherche de signes d'usure ou de dégradations inhabituelles, ce qui vous aidera à identifier les origines de vos problèmes de transmission et à y remédier.

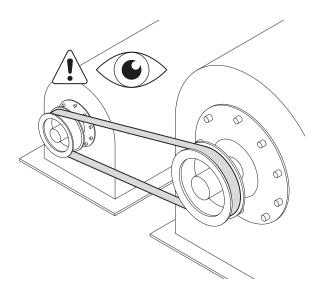
Vérifier les signes de température excessive de la courroie. Bien que les courroies chauffent en cours de fonctionnement, les températures ne doivent pas dépasser la plage de température de fonctionnement des courroies.

Diagnostic des pannes de courroies trapézoïdales - page 50

Diagnostic des pannes de courroies synchrones - page 53

Tourner la poulie à l'aide d'une clé lorsque vous faites tourner les transmissions manuellement (de manière à assurer un entraînement correct de la courroie). Vous éviterez ainsi de vous coincer les doigts entre la courroie et la poulie. Faites particulièrement attention à la rotation des transmissions par courroies synchrones d'une longueur importante lorsque vous mettez en prise la courroie. En effet, si vos doigts se coincent entre la courroie et les flasques de la poulie, vous pourriez bien les perdre! La rotation de la transmission doit être réalisée en tournant la poulie la plus grande, tout en évaluant en permanence les risques.

Il est impératif de remplacer toute courroie portant des traces de craquelures, de brillance, d'usure inhabituelle ou de casse des dents (pour les courroies synchrones).


Remplacement de la courroie trapézoïdale - page 27

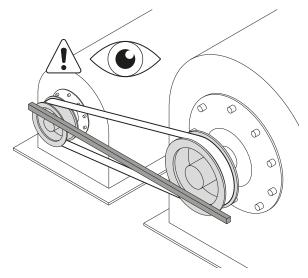
Remplacement de la courrole synchrone - page 29

ARRET COMPLET POUR INSPECTION

MAINTENANCE PREVENTIVE ETAPE PAR ETAPE

ETAPE 4 - INSPECTER LA POULIE

Après avoir retiré les courroies de la transmission, rechercher les traces d'usure ou de dégradation sur les poulies. Les signes d'usure ne sont pas toujours visibles. Pour vérifier les poulies de transmissions par courroies trapézoïdales, utiliser les calibres fournis par Gates.


Toujours vérifier que les poulies sont alignées et montées correctement. Un désalignement réduit les performances et la durée de vie de la transmission par courroie. Les principales causes de désalignement sont :

- Les poulies sont mal positionnées sur les axes ;
- Les arbres moteur et entraîné ne sont pas parallèles ;
- Les poulies sont inclinées par un mauvais montage.

Désalignement parallèle Angle de déflexion Désalignement angulaire Angle de déflexion

ETAPE 5 – VERIFIER L'ALIGNEMENT DES POULIES

Pour contrôler l'alignement, il vous faudra une règle ou un fil pour les grands entraxes. Aligner la règle ou le fil sur le flanc lisse des deux poulies (voir photo ci-dessous). Le désalignement se manifestera par un interstice entre le flanc de la poulie et la règle ou le fil. Cette méthode est seulement fiable si la distance entre le rebord de la gorge et la face extérieure est identique pour les deux poulies. L'inclinaison des poulies se vérifie avec un niveau.

Il n'est pas toujours facile de corriger le désalignement et, par conséquent, des outils laser tels que l'outil d'alignement laser LASER AT-1 peuvent se révéler très utiles. Le LASER AT-1 détecte le désalignement parallèle et angulaire des poulies et peut être utilisé pour des diamètres de poulies de 60mm et plus. Cet outil est installé en quelques secondes et le rayon laser projeté sur les « cibles » vous permet de contrôler et de corriger rapidement l'alignement. Il peut être utilisé sur des arbres horizontaux ou verticaux. Pour plus d'informations voir brochure E1/20121.

Outil d'alignement LASER AT-1 – page 87

ARRET COMPLET POUR INSPECTION

MAINTENANCE PREVENTIVE ETAPE PAR ETAPE

ETAPE 6 - VERIFIER LES TOLERANCES D'ALIGNEMENT

En règle générale, l'écart d'alignement de la poulie sur les transmissions par courroies trapézoïdales ne devrait pas dépasser 1/2° ou 5mm pour 500mm d'entraxe. L'alignement des transmissions à courroies Polyflex® et Micro-V® ne peut pas dépasser 1/4° ou 2,5mm par 500mm d'entraxe. Si une poulie présente des signes évidents d'usure ou de dommages, elle devra être remplacée.

Alignement des poulies - page 37

ETAPE 7 – VERIFIER LES AUTRES COMPOSANTS DE LA TRANSMISSION

Vérifier systématiquement l'alignement et la lubrification des roulements. Il faut aussi que les fixations du moteur soient correctement serrées. Vérifier que les rails de tension sont exempts de débris, d'obstructions, de saleté ou de rouille.

ETAPE 8 - VERIFIER LE SYSTEME DE MISE A LA TERRE

Contrôler l'état du système de conductibilité statique/terre (s'il y en a un) et remplacer les pièces défectueuses.

ETAPE 9 - REVERIFIER L'ALIGNEMENT DES POULIES

Il convient de vérifier à nouveau la position et l'alignement des poulies. En effet, elles pourraient s'être légèrement décalées durant les opérations de maintenance.

ETAPE 10 - VERIFIER LA TENSION DES COURROIES

La dernière étape consiste à vérifier la tension. Retendre la courroie si cela s'avère nécessaire. Avec une tension insuffisante, la courroie trapézoïdale patine et la courroie synchrone saute hors des dents. La tension correcte est la tension minimale à laquelle les courroies transmettent la charge maximale spécifiée pour la transmission.

Tension de la courroie - page 31

ETAPE 11 - REINSTALLER LE CARTER DE COURROIE

ETAPE 12 - REDEMARRER LA TRANSMISSION

Mettre la machine sous tension et la remettre en marche. Observer la transmission et écouter s'il n'y a rien d'anormal.

COMMENT DIAGNOSTIQUER ET RESOUDRE DES PROBLEMES DE TRANSMISSION PAR COURROIE

LISTE DE CONTROLE POUR LE DEPANNAGE

L'objectif du dépannage d'un problème de transmission est de déterminer la (les) cause(s) de la défaillance, puis de prendre les mesures correctives nécessaires. Les étapes suivantes seront suivies pour faciliter ce processus.

- 1. Décrivez le problème de transmission le plus précisément possible.
- 2. Passez en revue la liste des « Symptômes de transmission ». Vérifiez les symptômes observés et notez-les, ainsi que les observations de tout ce qui est inhabituel à propos de la transmission.
- 3. Passez en revue le « Tableau récapitulatif des problèmes et solutions ». Dressez la liste de la (des) cause(s) probable(s) et des mesures correctives. Passez également en revue la liste des observations.
- 4. Après avoir identifié les causes probables et les mesures correctives, passez-les en revue et mettez-les en œuvre.

Que faire si vous avez tout essayé?

Si le problème persiste après avoir épuisé toute tentative de dépannage, contactez le distributeur Gates local. Si le distributeur local n'est pas en mesure de résoudre le problème, un représentant de Gates qualifié peut être contacté. Conservez la ou les courroies défectueuses pour inspection ultérieure.

Vous pouvez également contacter les ingénieurs d'application des produits de transmission de puissance Gates à l'adresse pteusupport@gates.com ou l'ingénieur d'application local pour leur soumettre des questions supplémentaires concernant la conception et le dépannage des transmissions.

LISTE DE CONTROLE ETAPE PAR ETAPE

ETAPE 1 - DECRIRE LE PROBLEME

- Quelle est la valeur de tension de la courroie ?
- Qu'est-ce qui ne va pas ?
- Quand les difficultés ont-elles commencé ?
- Le problème se répète-t-il souvent ?
- Quelle est l'application ?
- Est-ce que les conditions environnantes ou les exigences de la transmission ont changé ?
- Quel est le type de courroie(s) utilisé ?
- Quelles performances de courroie exigez-vous de la transmission en question ?

ETAPE 2 – IDENTIFIER LES SYMPTOMES ET NOTER LES OBSERVATIONS DE TOUT CE QUI EST INHABITUEL

METHODES DE DEPANNAGE

Afin de déterminer l'origine d'un problème de transmission, vous disposez d'un choix d'instruments – du plus simple au plus complexe. Gates fournit certains de ces outils ; voici un aperçu des possibilités :

UTILISEZ VOS SENS

Une simple observation de la transmission en fonctionnement ou à l'arrêt peut déjà indiquer des difficultés. Est-ce que la courroie tourne d'une façon anormale ? Y a-t-il une odeur de caoutchouc brûlé ? Est-ce que les supports plient sous la charge ? Est-ce que vous entendez un sifflement, un crissement ou un grincement ? Est-ce qu'une accumulation de poussière en dessous de la transmission pourrait gêner la courroie ?

Tâtez les gorges des poulies. Celles-ci doivent être lisses, sans bavures ni aspérités. Cherchez toute trace d'usure anormale, de brûlures ou de craquelures sur les courroies.

CALIBRES POUR COURROIES ET POULIES DISPONIBLES AUPRES DE GATES

Si vous pensez que, dans une transmission par courroies trapézoïdales, les sections des courroies et des poulies ne correspondent pas, utilisez les calibres Gates. Ils vous aideront à identifier vos courroies au moment d'un remplacement et à détecter de l'usure sur les gorges de poulie.

REGLE

Même si les courroies trapézoïdales supportent un léger désalignement, leurs performances en souffriront malgré tout. Sur les transmissions par courroies synchrones, les erreurs d'alignement doivent être évitées à tout prix.

L'alignement peut être vérifié avec une longue règle. Il suffit de poser la règle sur les flancs des poulies et de voir s'il y a contact (ou pas). Au préalable, vérifiez que les poulies sont identiques.

Calibres pour courroles et poulles

PROBLEMES SUR LES TRANSMISSIONS PAR COURROIES TRAPEZOIDALES

Si vous remplacez des courroies trapézoïdales, prenez le temps d'examiner les courroies et les poulies, ainsi que les composants connexes de la transmission. Ces éléments donnent tous les indices dont vous avez besoin pour déterminer l'état de fonctionnement de votre transmission. Utilisez les informations ci-dessous pour définir la cause du problème et mettre en place les actions correctives nécessaires. Vous obtiendrez alors une transmission plus performante avec une meilleure durée de vie.

QUE RECHERCHER?

Rupture prématurée de la courroie

- Courroie(s) cassée(s)
- Les courroie(s) ne transmet(tent) pas la charge (patinage); pas de raison apparente
- Flancs de la courroie endommagés
- Séparation des différentes couches de la courroie

Usure anormale de la courroie

- Usure du dos
- Usure de la partie supérieure des flancs de courroie
- Usure des flancs
- Usure de la base des flancs
- Usure de la base de la courroie
- Base craquelée
- Base ou flancs brûlés ou durcis
- Extérieur de la courroie durci
- Enveloppage écaillé, flancs gluants ou gonflés
- Allongement de courroie

COURROIES SE RETOURNENT OU QUITTENT LES GORGES

- Courroie simple
- Une ou plusieurs courroies en jeu
- Courroies multiples ou PowerBand®

Allongement au-delà du rattrapage permis

- Courroie simple
- Courroies multiples s'allongeant de façon inégale
- Toutes les courroies s'allongent de façon égale
- Les courroies ne correspondent pas

Bruit inhabituel

- Crissement ou sifflement
- Battement
- Frottement
- Grincement
- Transmission excessivement bruvante

Vibrations inhabituelles

- Les courroies sautent
- Vibrations excessives dans la transmission

Problèmes de courroies multiples (PowerBand®)

- Séparation de la bande de liaison
- Dos de la bande de liaison effrité, usé ou endommagé
- PowerBand® saute hors de la transmission
- Un ou plusieurs brins sortent des poulies

Problèmes de poulies

- Poulie cassée ou endommagée
- Usure rapide des gorges

Problèmes sur les composants de la transmission

- Arbres pliés ou endommagés
- Carter endommagé

Paliers en surchauffe

- Tension de courroie excessive
- Poulies trop petites
- Paliers en mauvais état
- Porte-à-faux des poulies trop important
- Patinage de la courroie

Problèmes de performance

Vitesses de poulie entraînée incorrectes

PROBLEMES SUR LES TRANSMISSIONS PAR COURROIES TRAPEZOIDALES

	Problème	Cause possible	Solution
la courrole	Courroie(s) cassée(s)	Transmission sous-dimensionnée Courroie forcée lors du montage sur la transmission Objet étranger dans la transmission A-coup sévère	Redimensionnement de la transmission en utilisant le logiciel de calcul Gates Utiliser le rattrapage de la courroie lors de l'installation Protéger la transmission avec un carter approprié Redimensionnement pour tenir compte d'à-coups
Rupture prématurée de la courrole	La courroie ne transmet pas la charge (patinage) ; pas de raison apparente	Transmission sous-dimensionnée Cordes de traction endommagées Gorges des poulies abîmées Variation de l'entraxe	Redimensionnement de la transmission en utilisant le logiciel de calcul Gates Suivre la procédure de montage Evaluer l'usure des gorges et remplacer les composants défectueux Vérifier si l'entraxe varie pendant le fonctionnement
Ruptu	Flancs de la courroie endommagés	Désalignement des poulies Cordes de traction endommagées	Vérifier et corriger l'alignement Suivre la procédure de montage
	Séparation des différentes couches de la courroie	Poulies trop petites Galet extérieur trop petit	Vérifier le calcul de transmission et remplacer par des poulies plus grandes Augmenter le diamètre du galet extérieur
	Usure du dos	Frottement contre le carter Mauvais fonctionnement du galet	Remplacer ou réparer le carter Remplacer le galet
oie	Usure de la partie supérieure des flancs	Mauvaise combinaison courroies/ poulies (courroies trop petites pour la gorge)	Utiliser la bonne combinaison courroies/ poulies
Usure sévère ou anormale de la courroie	Usure des flancs	Patinage Désalignement Usure des poulies Courroie mal adaptée	 Retendre jusqu'à ce que le patinage cesse Réaligner les poulies Remplacer les poulies Utiliser une courroie correctement dimensionnée
anormal	Usure de la base des flancs	Mauvaise combinaison courroies/ poulies Usure des poulies	Utiliser la bonne combinaison courroies/ poulies Remplacer les poulies
sévère ou	Usure de la base	La courroie touche le fond de la gorge Usure des poulies Objets étrangers dans les poulies	Utiliser la bonne combinaison courroies/ poulies Remplacer les poulies Nettoyer les poulies
Usure	Base craquelée	 Diamètre de poulie insuffisant Patinage Galet extérieur trop petit Stockage inapproprié 	Utiliser des poulies de plus grand diamètre Installer une nouvelle courroie à la tension correcte Augmenter le diamètre du galet extérieur Ne pas enrouler trop serré, plier ou tordre la courroie. Eviter la chaleur et les rayons directs du soleil
re ou courroie	Base ou flancs brûlés ou durcis	Patinage Usure des poulies Transmission sous-dimensionnée Variation de l'entraxe	 Retendre à la tension de courroie spécifiée Remplacer les poulies Redimensionnement de la transmission en utilisant le logiciel de calcul Gates Vérifier si l'entraxe varie
Usure sévère ou anormale de la courroie	Extérieur de la courroie durci	La température de fonctionnement de la transmission a dépassé la plage de température admissible de la courroie	Améliorer la ventilation
ano	Enveloppage écaillé, flancs gluants ou gonflés	Contamination excessive à l'huile ou aux produits chimiques	Ne pas utiliser de lubrifiants pour courroies. Eliminer les sources d'huile, de graisse et de contamination chimique

PROBLEMES SUR LES TRANSMISSIONS PAR COURROIES TRAPEZOIDALES

	Problème	Cause possible	Solution
	Crissement ou sifflement	Patinage Contamination	Retendre à la tension de courroie spécifiée Nettoyer les courroies et les poulies
Bruit inhabituel	Battement	Tension insuffisante Désalignement	Retendre à la tension de courroie spécifiée Réaligner les poulies afin de répartir la tension de façon égale sur toutes les courroies
inha	Frottement	Frottement contre le carter	Réparer, remplacer ou concevoir un nouveau carter
Bruit	Transmission excessivement bruyante	Courroie mal adaptée Usure des poulies Objets étrangers dans les poulies	Utiliser une courroie de dimensions correctes Remplacer les poulies Nettoyer les poulies, mettre un carter, enlever rouille, peinture ou saletés dans les gorges
(0	Les courroies sautent	 Courroies sous-tendues Désalignement des poulies 	Retendre à la tension de courroie spécifiée Aligner les poulies
Vibrations inhabituelles	Vibrations excessives dans la transmission	 Courroie mal adaptée Mauvaise conception Poulie usée Jeu sur les composants de la transmission 	 Utiliser la section de courroie correspondant à celle de la poulie Vérifier la structure de l'installation et la charge admissible des paliers et des supports Remplacer la poulie Vérifier les composants de la machine
	Séparation de la bande de liaison	 Usure des poulies Distance incorrecte entre les gorges 	Remplacer les poulies Utiliser les poulies adéquates
nes de multiples	Dos de la bande de liaison effrité, usé ou endommagé	Frottement contre le carter Mauvais fonctionnement ou endommagement du galet extérieur	Vérifier le carter Réparer ou remplacer le galet extérieur
Problèmes de courroies multiples	PowerBand® saute hors de la transmission	Objets étrangers dans les poulies Désalignement	Nettoyer les gorges et utiliser des courroies simples afin d'éviter l'accumulation de saletés dans les gorges Réaligner la transmission
	Un ou plusieurs brins sortent des poulies	 Désalignement Sous-tension 	 Réaligner la transmission Retendre à la tension de courroie spécifiée
Problèmes de poulies	Poulie cassée ou endommagée	Installation incorrecte de la poulie Objets étrangers dans la transmission Vitesses périphériques excessives Montage incorrect de la courroie	Ne pas serrer les boulons du moyeu au-delà du couple de serrage recommandé Monter un carter de protection Utiliser des poulies compatibles avec les vitesses périphériques données. Ne pas monter la courroie en force sur les poulies
	Usure rapide des gorges	Tension excessive Sable, objets étrangers ou saletés dans la transmission	Retendre à la tension de courroie spécifiée Nettoyer et mettre un carter
Problèmes sur les autres composants de la transmission	Arbres pliés ou endommagés	Tension excessive Transmission surdimensionnée* Dégâts accidentels Erreur de conception de la machine	Retendre à la tension de courroie spécifiée Vérifier le calcul, il est peut-être nécessaire d'utiliser moins de courroies ou des courroies plus petites Adapter le carter Vérifier le calcul de transmission
Probautre de la	Carter endommagé	Dégâts accidentels ou mauvaise conception du carter	Réparer le carter ou repenser sa conception
Problèmes de performance	Vitesses de poulie entraînée incorrectes	Erreur de calcul Patinage	Utiliser le rapport poulie motrice/poulie entraînée adapté afin d'obtenir le rapport de vitesse désiré Retendre la transmission à la tension de courroie spécifiée

PROBLEMES SUR LES TRANSMISSIONS PAR COURROIES SYNCHRONES

Il peut s'avérer difficile d'identifier la cause de défaillance de la transmission par courroie synchrone. Dans cette section, nous diagnostiquerons quelques-uns des problèmes de transmission par courroie synchrone les plus communs, pour que vous soyez prêt(e) à les corriger et à mettre en place les mesures préventives dans le futur.

QUE RECHERCHER?

Problèmes de courroies

- Bruit inhabituel
- Perte de tension
- Usure excessive des flancs de la courroie
- Rupture des cordes de traction
- Craquelures
- Usure prématurée des dents
- Arrachement des dents
- Rochetage de courroie
- Usure de surface

Problèmes de poulies dentées

- Flasque endommagé
- Usure anormale des poulies
- Rouille ou corrosion

Problèmes de performance

- Problèmes d'engrènement
- Température excessive : roulements, carters, arbres, etc.
- Problèmes de synchronisation
- Vibrations
- Vitesses de poulie entraînée incorrectes

	Problème	Cause possible	Solution
	Bruit inhabituel	 Désalignement de la transmission Tension trop faible ou trop haute Galet extérieur Usure de la poulie Flasque plié Vitesse de courroie excessive Profil de courroie incorrect pour la poulie (par ex. HTD®, GT, etc.) Diamètres de poulies/galets tendeurs insuffisants Charge excessive 	Corriger l'alignement Ajuster à la tension de courroie spécifiée Vérifier la position/l'alignement du galet tendeur Remplacer la poulie Remplacer le flasque Adapter la transmission Utiliser la combinaison courroies/poulies spécifiée Adapter la transmission en utilisant des diamètres supérieurs Adapter la transmission pour en augmenter la capacité
Problèmes de courroies synchrones	Perte de tension	Rigidité insuffisante de la structure Usure excessive des poulies Entraxe fixe Saletés excessives Charge excessive Diamètres de poulies/galets tendeurs insuffisants Détérioration inhabituelle de la courroie	1. Renforcer la structure 2. Utiliser une poulie fabriquée à partir d'un autre matériau 3. Utiliser un galet tendeur pour le réglage de la tension 4. Nettoyer la transmission et vérifier le carter 5. Adapter la transmission pour en augmenter la capacité 6. Adapter la transmission en utilisant des diamètres supérieurs 7. Utiliser une courroie spécifiée pour un environnement donné
Problèmes de	Usure excessive des flancs de la courroie	 Manipulation incorrecte Flasque endommagé Courroie trop large Tension de la courroie trop faible Finition de la surface du flasque rugueuse Mauvais engrènement Courroie en contact avec le carter ou les supports 	Suivre les recommandations de manipulation Réparer le flasque ou remplacer la poulie Utiliser une largeur de poulie appropriée Ajuster la tension à la valeur recommandée Réparer ou remplacer le flasque (éviter les matériaux rugueux) Corriger l'alignement Retirer les obstacles ou utiliser un galet intérieur
	Rupture des cordes de traction	 A-coups excessifs Diamètres de poulies/galets tendeurs insuffisants Manipulation ou stockage incorrect avant l'installation Saletés ou corps étranger dans la transmission Défaut de concentricité de la poulie 	Adapter la transmission pour en augmenter la capacité Adapter la transmission en utilisant des diamètres supérieurs Suivre les recommandations de manipulation et de stockage Retirer les débris et vérifier le carter Remplacer la poulie

PROBLEMES SUR LES TRANSMISSIONS PAR COURROIES SYNCHRONES

	Problème	Cause possible	Solution
	Craquelures	Diamètres de poulies insuffisants Galet extérieur Température extrêmement basse au démarrage Contacts prolongés avec agents chimiques nocifs	Adapter la transmission en utilisant des diamètres supérieurs Utiliser un galet intérieur ou augmenter le diamètre du galet extérieur Préchauffer l'environnement de la transmission Protéger la transmission ou utiliser une courroie spécifiée pour fonctionner dans un environnement donné
Problèmes de courroies synchrones	Usure prématurée des dents	1. Tension incorrecte 2. La courroie quitte partiellement une poulie sans flasque 3. Désalignement de la transmission 4. Profil de courroie incorrect pour la poulie (par ex. HTD®, GT, etc.) 5. Usure de la poulie 6. Gorges de poulies rugueuses 7. Poulie endommagée 8. Poulie de dimensions inadéquates 9. Courroie en contact avec la structure d'entraînement 10. Charge excessive 11. Dureté insuffisante de la poulie 12. Saletés excessives	1. Ajuster à la tension de courroie spécifiée 2. Corriger l'alignement 3. Corriger l'alignement 4. Utiliser la combinaison courroies/poulies spécifiée 5. Remplacer la poulie 6. Remplacer la poulie 7. Remplacer la poulie 8. Remplacer la poulie 9. Modifier la structure ou utiliser un galet tendeur 10. Adapter la transmission pour en augmenter la capacité 11. Utiliser une poulie plus résistante à l'usure 12. Nettoyer la transmission et vérifier le carter
ř.	Arrachement des dents	 A-coups excessifs Moins de 6 dents en prise Défaut de concentricité de la poulie Usure de la poulie Galet extérieur Profil de courroie incorrect pour la poulie (par ex. HTD®, GT, etc.) Désalignement de la transmission Courroie sous-tendue 	Adapter la transmission pour en augmenter la capacité Adapter la transmission Remplacer la poulie Remplacer la poulie Utiliser un galet intérieur Utiliser la combinaison courroies/poulies spécifiée Corriger l'alignement Ajuster la tension à la valeur spécifiée
ý,	Flasque endommagé	Les flasques se détachent sous la pression de la courroie	Corriger l'alignement ou améliorer la fixation des flasques
Problèmes de poulies dentées	Usure anormale des poulies	 La poulie présente une résistance à l'usure trop faible (par ex. plastique, métaux mous, aluminium) Désalignement de la transmission Saletés excessives Charge excessive Tension incorrecte Profil de courroie incorrect pour la poulie (par ex. HTD®, GT, etc.) 	 Utiliser une poulie fabriquée à partir d'un autre matériau Corriger l'alignement Nettoyer la transmission et vérifier le carter Adapter la transmission pour en augmenter la capacité Ajuster la tension à la valeur spécifiée Utiliser la combinaison courroies/poulies spécifiée
les de lance	Problèmes d'engrènement	La courroie quitte partiellement une poulie sans flasque Usure excessive des flancs de la courroie	Corriger l'alignement Corriger l'alignement
Problèmes de performance	Vibrations	 Denture de la courroie inadaptée à la combinaison de poulies (par ex. HTD®, GT, etc.) Tension incorrecte Jeu sur moyeu ou fixation 	Utiliser la courroie/poulie spécifiée Ajuster la tension à la valeur spécifiée Vérifier et réinstaller conformément à la tension de courroie spécifiée

Que faire si vous avez tout essayé?

Nous avons fait le maximum pour couvrir les problèmes de transmission les plus répandus. Si vous êtes confronté à une situation difficile, contactez votre distributeur Gates. Si celui-là ne peut pas vous aider, il vous conseillera l'aide d'un représentant de Gates. Des experts sont toujours à votre disposition.

6. DONNEES TECHNIQUES

DRIVEN BY POSSIBILITY™

LISTE DE CORRESPONDANCES COURROIES TRAPEZOIDALES

	MARQUE		
Type de courroie	GATES	Optibelt	ContiTech
Courroies trapézoïdales simples			
Haut de gamme, section étroite, enveloppée – cordes de traction en aramide) (SPBP, SPCP – 5VP/15JP, 8VP/25JP)	Predator®	Optibelt® Blue Power	Conti®V Power
Haut de gamme, section étroite, à flancs nus, crantée (XPZ, XPA, XPB, XPC - 3VX, 5VX)	Quad-Power® 4	Optibelt® Super X-Power Optibelt® Super E-Power	Conti®V FO Pioneer Conti®V FO Advance
Section étroite, à flancs nus, crantée (SPZ, SPA, SPB, SPC)	Super HC® MN		Conti®V FO DIN7753
Section étroite, enveloppée (SPZ, SPA, SPB, SPC - 3V/9J, 5V/15J, 8V/25J)	Super HC® Delta Narrow™	Red Power 3 Optibelt® SK	Conti®V Advance Conti®V DIN7753
Section classique, à flancs nus, crantée (AX, BX, CX)	Tri-Power®	Optibelt® Super TX	Conti®V FO DIN2215
Section classique, enveloppée (Z, A, B, C, D, E)	Hi-Power [®] Delta Classic [™]	Optibelt® VB	Conti®V DIN2215
Trapézoïdale double, enveloppée (AA, BB, CC, DD)	Dubl-V	Optibelt® DK	Conti®V Dual
Haut de gamme, puissance fractionnaire, enveloppée – cordes de traction en aramide (2L, 3L, 4L, 5L)	PoweRated®	Optibelt® VB-LC	Conti®V Garden
Puissance fractionnaire, enveloppée (2L, 3L, 4L, 5L)	TruFlex®		
Courroies trapézoïdales multiples			
Haut de gamme, multiple, section étroite, enveloppée - Cordes de traction en aramide (SPBP, SPCP – 5VP/15JP, 8VP/25JP)	Predator® PowerBand®	Optibelt® KB Bleu Power	Conti®V Multibelt Power
Haut de gamme, multiple, section étroite, à flancs nus, crantée (XPZ, XPA, XPB - 3VX, 5VX)	Quad-Power® 4 PowerBand®	Optibelt® Super KBX-Power	Conti®V Multibelt FO
Multiple, section étroite, enveloppée (SPB, SPC - 3V/9J, 5V/15J, 8V/25J)	Super HC® PowerBand®	KB Red Power 3 Optibelt® KB SK	Conti®V Multibelt Advance Conti®V Multibelt
Multiple, section classique, à flancs nus, crantée (AX, BX, CX)	Tri-Power® PowerBand®	Optibelt® KBX	
Multiple, section classique, enveloppée (A, B, C)	Hi-Power® PowerBand®	Optibelt® KB VB	Conti®V Multibelt Advance Conti®V Multibelt
En polyuréthane (angle 60°) (3M, 5M, 7M, 11M)	PolyFlex®	Optibelt® KK	
Courroie trapézoïdale multiple, polyuréthane (angle 60°) (3M-JB, 5M-JB, 7M-JB, 11M-JB)	PolyFlex® JB™		
Courroie pour variateurs, à flancs nus, crantée	Multi-Speed®	Optibelt® Vario Power	Conti®V Varispeed Advance Conti®V Varispeed Power
Striée (H, J, K, L, M - PH, PJ, PK, PLM, PM)	Micro-V®	Optibelt® RB	Conti®V Multirib Power Conti®V Multirib

COURROIES TRAPEZOIDALES

MARQUE				
Megadyne	SIT	Dayco-Carlisle-Timken	Stomil	Bando
		Aramax Xtra Duty	Courroies trapézoïdales Super-K	Power Ace Aramid Comb
Linea Gold XP Power Wedge VX		Gold-Ribbon Cog		
Linea X	SIT Torque Flex® CSX SIT Wedge CW MC	Power-Wedge Cog		Power Ace Cog
Oleostatic (Gold) SP	SIT Excelite® ES CLSP SIT Wedge CW E	Super Power-Wedge	Courroies trapézoïdales Super	Narrow SP Power Ace
Gold Label X	SIT Torque Flex® CTX	Gold-Ribbon Cog		Power King Cog
Oleostatic (Gold) Extra	SIT Excelite® ES CL	Super Blue Ribbon Super II	Classic V-belt	Power King
EsaFlex		Double Angle	Double side V-belt	Double V
XDV2		Durapower II Raw Edge FHP	Courroles Garden	UltraPower AG
				Duraflex GL (FHP)
		Aramax Wedge-Band		
PluriBand XP	SIT Banded MC	Gold-Ribbon Cog-Band Power-Wedge Cog-Band		Power Ace Cog Combo
PluriBand SP	SIT Banded E	Wedge-Band	Power Bands	Power Ace Combo
PluriBand		Super-Vee-Band	Power Bands	Power King Combo
				Banflex
				Banflex Combo
Varisect	SIT Vario	Variable Speed Cog	Courroies trapézoïdales Super VX	Power Max Variable Speed
PV	Poly-V	Vee-Rib		Rib Ace

Remarque importante

L'objectif des listes de correspondances ci-dessus est de vous donner une indication des conversions possibles aux courroies Gates.

Les courroies Gates peuvent remplacer les produits de la concurrence mentionnés; vous pouvez cependant rencontrer des problèmes si vous remplacez des courroies Gates par les produits mentionnés, puisque les courroies Gates ont généralement une capacité de transmission de puissance plus élevée.

LISTE DE CORRESPONDANCES COURROIES TRAPEZOIDALES

	MARQUE		
Type de courroie	GATES	Mitsuboshi	PIX
Courroles trapézoïdales simples			
Haut de gamme, section étroite, enveloppée – cordes de traction en aramide) (SPBP, SPCP – 5VP/15JP, 8VP/25JP)	Predator®		PIX-Terminator®-HXS
Haut de gamme, section étroite, à flancs nus, crantée (XPZ, XPA, XPB, XPC - 3VX, 5VX)	Quad-Power® 4		
Section étroite, à flancs nus, crantée (SPZ, SPA, SPB, SPC)	Super HC® MN	Maxstar wedge supreme	PIX-X'tra®
Section étroite, enveloppée (SPZ, SPA, SPB, SPC - 3V/9J, 5V/15J, 8V/25J)	Super HC® Delta Narrow™	Maxstar wedge	PIX-X'set® PIX-Muscle®-XS3
Section classique, à flancs nus, crantée (AX, BX, CX)	Tri-Power®	Triplex	
Section classique, enveloppée (Z, A, B, C, D, E)	Hi-Power [®] Delta Classic [™]	Conventional	Power Wrap
Trapézoïdale double, enveloppée (AA, BB, CC, DD)	Dubl-V		PIX-Duo®-XS
Haut de gamme, puissance fractionnaire, enveloppée – cordes de traction en aramide (2L, 3L, 4L, 5L)	PoweRated®		PIX-X'set® Light Duty Belts
Puissance fractionnaire, enveloppée (2L, 3L, 4L, 5L)	TruFlex®		PIX-X'set® Light Duty Belts
Courroles trapézoïdales multiples			
Haut de gamme, multiple, section étroite, enveloppée - cordes de traction en aramide (SPBP, SPCP – 5VP/15JP, 8VP/25JP)	Predator® PowerBand®		
Haut de gamme, multiple, section étroite, à flancs nus, crantée (XPZ, XPA, XPB - 3VX, 5VX)	Quad-Power® 4 PowerBand®		
Multiple, section étroite, enveloppée (SPB, SPC - 3V/9J, 5V/15J, 8V/25J)	Super HC® PowerBand®	Multi Maxstar	PIX-DuraBand®-XS
Multiple, section classique, à flancs nus, crantée (AX, BX, CX)	Tri-Power® PowerBand®	Multi Triplex	PIX-DuraBand®-XS
Multiple, section classique, enveloppée (A, B, C)	Hi-Power® PowerBand®	Conventional Banded	
En polyuréthane (angle 60°) (3M, 5M, 7M, 11M)	PolyFlex®	Polymax	
Courroie trapézoïdale multiple, polyuréthane (angle 60°) (3M-JB, 5M-JB, 7M-JB, 11M-JB)	PolyFlex [®] JB [™]	Multi Polymax	
Courroie pour variateurs, à flancs nus, crantée	Multi-Speed®		PIX-X'set®-VS
Striée (H, J, K, L, M - PH, PJ, PK, PLM, PM)	Micro-V®	Ribstar	PIX-X'ceed®

COURROIES TRAPEZOIDALES

MARQUE			
PTS Strongbelt	SKF	Colmant Cuvelier	Fenner
		Veco 300	
			Fenner Quattro plus
Strongbelt Maximum	Cogged raw edge wedge belt	Veco GTX Veco MX	Fenner Power CRE plus wedge belt
Strongbelt Cursus	Wrappedwedge belt Wrappednarrow wedge	Veco Evolution Veco 200	Fenner Ultra Plus 150 Fenner Ultra Plus
Moulded cogged, raw edge	Cogged raw edge classical belt		
Strongbelt Classis	Wrappedclassical belt	Veco 100	Fenner-Classic V-belt
Strongbelt Duplum	Double classical (Hex) belt	Ventico Garden	
		Ventico Garden	
		Ventico Garden	
Strongbelt Rubustus			
Strongbelt Rubustus	Banded wedge belt	Vecoband	Fenner Concord Plus
Strongbelt Rubustus	Banded classical belt	Vecoband	
60° polyurethane-banded V-belt			
60° polyurethane-banded V-belt			
Strongbelt Varius		Variveco	
Strongbelt Forma	Ribbed belt		Fenner Polydrive Plus

Remarque importante

L'objectif des listes de correspondances ci-dessus est de vous donner une indication des conversions possibles aux courroies Gates.

Les courroies Gates peuvent remplacer les produits de la concurrence mentionnés; vous pouvez cependant rencontrer des problèmes si vous remplacez des courroies Gates par les produits mentionnés, puisque les courroies Gates ont généralement une capacité de transmission de puissance plus élevée.

COURROIES SYNCHRONES

	MARQUE			
Type de courroie	GATES	Optibelt	ContiTech	
Courroles synchrones				
Performance extraordinaire, couple inégalé (5mm, 8mm, 14mm, 19mm)	Poly Chain® GT Carbon™ Poly Chain® Carbon™ Volt®	(DeltaChain® Carbon)	Conti [®] Synchrochain Carbon	
Haute performance, couple élevé (8mm, 14mm)	Poly Chain® GT2	(DeltaChain®)	Conti® Synchrochain	
Haute puissance transmissible – cordes renforcées (8mm, 14mm)	PowerGrip® GTX	Optibelt® Omega HL	Conti® Synchroforce CXA (HTD/STD) Conti Falcon Pd Conti® Synchroforce Extreme	
Haute puissance transmissible (2mm, 3mm, 5mm, 8mm, 14mm)	PowerGrip® GT3	Optibelt® Omega HP Optibelt® Omega FanPower	Conti® Synchroforce CXP (HTD/STD) Conti® Synchroforce Supreme	
Couple élevé - HTD (3mm, 5mm, 8mm, 14mm, 20mm)	PowerGrip® HTD®	Optibelt® Omega Optibelt® STD	Conti® Synchrobelt (HTD/STD)	
Trapézoïdale (MXL, XL, L, H, XH, XXH)	PowerGrip®	Optibelt® ZR	Conti® Synchrobelt	
Double face (XL, L, H - 3mm, 5mm, 8mm, 14mm)	Twin Power®	Optibelt® ZR double sided Optibelt® HTD double sided	Conti® Synchrotwin DH Conti® Synchrotwin CXP(III)	
A bouts libres - caoutchouc (MXL, XL, L - 2mm, 3mm, 5mm, 8mm, 14mm)	Long Length™	Optibelt® HP Omega Linear Optibelt® Omega Linear Optibelt® ZR/HTD/STD linear	Conti [®] Synchroline	
Pour unités de peinture et de vernissage	PowerPaint™	Optibelt® Rainbow	Conti® Synchrocolor	
Synchronous + Micro-V®	Mill-K	Optibelt® Omega Special	Conti® Synchrorib	

Courroles synchrones PU			
Pas métrique – manchons (T2,5, T5, T10 - AT5, AT10)	Synchro-Power®	Optibelt® Alpha Power	
Pas métrique double face – manchettes (DL-T5, DL-T10)	Synchro-Power®	Optibelt® Alpha-D	
Pas métrique - sans fin		Optibelt® Alphaflex	
Linéaire	Synchro-Power® Long Length™	Optibelt® Alpha linear	SynchroDrive®

COURROIES SYNCHRONES

		MARQUE	E	
Megadyne	Stomil	Bando	Mitsuboshi	PIX
Isoran RPP Gold Isoran RPP Platinum			Giga Torque GX Mega Torque GII	
Isoran RPP Silver2		Synchro-Link® HPS	Mega Torque G	PIX-TorquePlus-XT2
Isoran RPP (Plus)		Synchro-Link® HT/STS	Super Torque	PIX-X'act HTD/STD
Isoran Imperial		Synchro-Link®	Timing Belt G	PIX-X'act CT
Isoran RPP DD Isoran DD		Synchro-Link® double sided		PIX-Dua XT
Isoran Open-end		Open end	Long Span	
MegaPaint®				PIX-PaintPro®-XT
Roller mill belts				PIX-Brawn-XT
		Synchro-Link Polyuréthane		
		Synchro-Link Polyuréthane		

Remarque importante

L'objectif des listes de correspondances ci-dessus est de vous donner une indication des conversions possibles aux courroies Gates.

Les courroies Gates peuvent remplacer les produits de la concurrence mentionnés ; vous pouvez cependant rencontrer des problèmes si vous remplacez des courroies Gates par les produits mentionnés, puisque les courroies Gates ont généralement une capacité de transmission de puissance plus élevée.

COURROIES SYNCHRONES

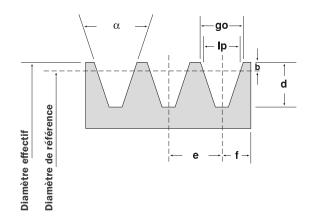
		MARQUE	
Type de courroie	GATES	PTS Strongbelt	SKF
Courroles synchrones			
Performance extraordinaire, couple inégalé (5mm, 8mm, 14mm, 19mm)	Poly Chain® GT Carbon™ Poly Chain® Carbon™ Volt®		
Haute performance, couple élevé (8mm, 14mm)	Poly Chain® GT2		
Haute puissance transmissible – cordes renforcées (8mm, 14mm)	PowerGrip® GTX		
Haute puissance transmissible (2mm, 3mm, 5mm, 8mm, 14mm)	PowerGrip® GT3	Strongbelt® Premium	
Couple élevé - HTD (3mm, 5mm, 8mm, 14mm, 20mm)	PowerGrip® HTD®	Strongbelt® Motus	HiTD
Trapézoïdale (MXL, XL, L, H, XH, XXH)	PowerGrip®	Timing belt - inch	Timing belt
Double face (XL, L, H - 3mm, 5mm, 8mm, 14mm)	Twin Power®	Double Timing belt - M	Double sided timing belt Double sided HiTD belt
A bouts libres - caoutchouc (MXL, XL, L - 2mm, 3mm, 5mm, 8mm, 14mm)	Long Length™	Open-ended timing belt	
Pour unités de peinture et de vernissage	PowerPaint™		
Synchronous + Micro-V®	Mill-K		

Courroles synchrones PU			
Pas métrique - manchons (T2,5, T5, T10 - AT5, AT10)	Synchro-Power®	Timing belt - T Timing belt - AT	
Pas métrique double face – manchettes (DL-T5, DL-T10)	Synchro-Power®	Double timing belt - T	
Pas métrique - sans fin			
Linéaire	Synchro-Power® Long Length™		

COURROIES SYNCHRONES

	MARQUE							
Colmant Cuvelier	Fenner	SIT Dayco-Carlisle-1						
		Mustang Torque	Panther XT					
	Fenner® Torque Drive Plus3	Mustang Speed HTD Mustang Speed Super Torque	Panther ACHE Belt					
Veco® Synchro HTB	Fenner® HTD	Top Drive® HTD	Synchro-Cog HT					
Veco® Synchro Standard	Fenner® Classical	Classica	Synchro-Cog					
		Mustang Speed Dual Top Drive® HTD Dual	Dual Synchronous Belt					
		Open end						

Veco Synchro métrique	Synchrones métrique	
Veco Synchro métrique	Double-sided metric	


Remarque importante

L'objectif des listes de correspondances ci-dessus est de vous donner une indication des conversions possibles aux courroies Gates.

Les courroies Gates peuvent remplacer les produits de la concurrence mentionnés ; vous pouvez cependant rencontrer des problèmes si vous remplacez des courroies Gates par les produits mentionnés, puisque les courroies Gates ont généralement une capacité de transmission de puissance plus élevée.

NOMENCLATURE DES GORGES POUR COURROIES TRAPEZOIDALES

Dimensions et tolérances des gorges de poulies suivant les normes ISO 4183, DIN 2211 et DIN 2217

Section de la courroie	Largeur de référence Lp (mm)	Diamètre de référence (mm)	Angle de gorge (α)	go (mm)	d (mm)	e (mm)	f* (mm)	b (mm)
Z** mm XPZ	8,5	de 63 à 80 > 80	34° ± 1° 38° ± 1°	9,72 9,88	11 (+0,25/-0)	12 ± 0,30	8 ± 0,6	2,00
A** SPA*** XPA	11	de 90 à 118 > 118	34° ± 1° 38° ± 1°	12,68 12,89	13,75 (+0,25/-0)	15 ± 0,30	10 ± 0,6	2,75
B** SPB*** SPB-PB XPB	14	de 140 à 190 > 190	34° ± 1° 38° ± 1°	16,14 16,41	17,5 (+0,25/-0)	19 ± 0,40	12,5 ± 0,8	3,50
C** SPC*** SPC-PB XPC	19	de 224 à 315 > 315	34° ± 1/2° 38° ± 1/2°	21,94 22,31	24 (+0,25/-0)	25,5 ± 0,50	17 ± 1,0	4,80
D** mm	27	de 355 à 500 > 500	36° ± 1/2° 38° ± 1/2°	32,00	28 (min.)	37 ± 0,60	24 (±2)	8,10
E** mm	32	de 500 à 630 > 630	36° ± 1/2° 38° ± 1/2°	40,00	33 (min.)	44,5 ± 0,70	29 (±2)	12,00

Les tolérances sur les diamètres de référence peuvent être calculées en appliquant la tolérance (+1,6/- 0%) à la valeur nominale du diamètre de référence en mm.

^{*} Ces tolérances doivent être prises en compte pour l'alignement des poulies.

^{**} Conformément à la norme DIN 2217.

^{***} Conformément aux normes DIN 2211 et ISO 4183.

Dimensions et tolérances des gorges de poulies pour Super HC® PowerBand® suivant la norme ISO 5290

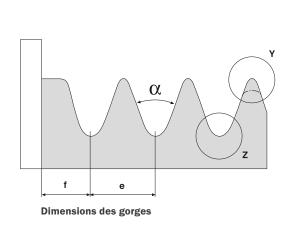
Section de la courroie	Diamètre effectif (mm)	Angle de gorge $(\alpha) \pm 1/4^{\circ}$	go (mm) ± 0,13	d (mm) (+ 0,25/-0)	e* (mm) ± 0,40	f (mm)
	< 90	36°				
3V/9J	de 90 à 150	38°	8,9	8,9	10,3	0 (+2 4 / 0)
PowerBand®	de 151 à 300	40°	0,9	0,9		9 (+2,4/-0)
	> 300	42°				
5)//45	< 250	38°				
5V/15J PowerBand®	de 250 à 400	40°	15,2	15,2	17,5	13 (+3,2/-0)
1 Ower Barra	> 400	42°				
0144054	< 400	38°				
8V/25J PowerBand®	de 400 à 560	40°	25,4	25,4	28,6	19 (+6,3/-0)
Tomorband	> 560	42°				

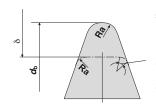
^{*} La somme des tolérances « e » pour toutes les gorges d'une poulie ne dépassera pas ± 0,5mm pour les sections 9J et 15J; elle ne dépassera pas \pm 0,8mm pour la section 25J.

Dimensions et tolérances des gorges de poulies pour Super HC® PowerBand® suivant les normes RMA

Section de la courroie	Largeur de référence (mm)	Diamètre effectif (mm)	Angle de gorge (α) ± 1/4°	go (mm) ± 0,13	d (mm) (minimum)	e* (mm) ± 0,40	f (mm)	b (mm)
		< 90	36°					
3V/3VX		de 90 à 150	38°					
et PowerBand®	8,45	de 151 à 300	40°	8,89	8,6	10,32	8,73 (+2,4/-0)	0,65
		> 300	42°					
		< 250	38°					
5V/5VX et PowerBand®	14,40	de 250 à 400	40°	15,24	15,0	17,46	12,70 (+3,2/-0)	1,25
Towerband		> 400	42°					
		< 400	38°					
8V/8VX et PowerBand®	23,65	de 400 à 560	40°	25,4	25,1	28,58	19,05 (+6,3/-0)	2,54
. cc. Sana		> 560	42°					

 $^{^{\}star}$ La somme des tolérances « e » pour toutes les gorges d'une poulie ne dépassera pas \pm 0,79mm.


Dimensions et tolérances des gorges de poulies pour Hi-Power® PowerBand® suivant les normes RMA


Section de la courroie	Diamètre effectif (mm)	Angle de gorge (α) ± 1/2°	go (mm)	d (mm) ± 0,79	e* (mm) ± 0,60	f (mm)	
A - PowerBand®	< 140	34°	12,55 ± 0,13	12,45	15,88	9,53 (+1,78/-0)	
A - Powerband	> 140	38°	12,80 ± 0,13	12,45	15,00	9,55 (+1,76/-0)	
B - PowerBand®	< 180	34°	16,18 ± 0,13	14.72	10.05	10.70 (12.80 (0)	
B - PowerBand	> 180	38°	16,51 ± 0,13	14,73	19,05	12,70 (+3,80/-0)	
	< 200	34°	22,33 ± 0,18				
C - PowerBand®	de 200 à 315	36°	22,53 ± 0,18	19,81	25,40	17,48 (+3,80/-0)	
	> 315	38°	22,73 ± 0,18				
	< 355	34°	31,98 ± 0,18				
D - PowerBand®	de 355 à 450	36°	32,28 ± 0,18	26,67	36,53	22,23 (+6,35/-0)	
	> 450	38°	32,59 ± 0,18				

 $^{^*}$ La somme des tolérances « e » pour toutes les gorges d'une poulie ne dépassera pas \pm 1,2mm.

NOMENCLATURE DES GORGES DE POULIES POUR COURROIES MICRO-V®

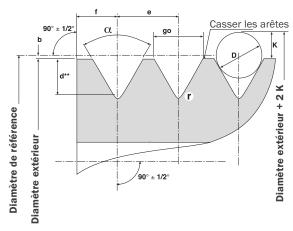
, and the second second

Vue rapprochée Y : partie supérieure de la gorge

La dimension de la partie inférieure de la gorge ne doit pas excéder la valeur Ri maximale (dimension variable selon le fabricant).

Vue rapprochée Z : partie inférieure de la gorge

La dimension de la partie supérieure de la gorge doit être comprise entre les valeurs minimales et maximales indiquées (dimension variable selon le fabricant).


Dimensions et tolérances des gorges de poulies pour Micro-V® suivant les normes DIN 7867 et ISO 9981

Section de la courroie	Angle de gorge	e* (mm)	Ri (mm)	Ra (mm)	f (mm)
PJ	40 ± 1/2°	2,34 ± 0,03	0,40	0,20	1,8
PK	40 ± 1/2°	3,56 ± 0,05	0,50	0,25	2,5
PL	40 ± 1/2°	4,70 ± 0,05	0,40	0,40	3,3
PM	40 ± 1/2°	9,40 ± 0,08	0,75	0,75	6,4

La somme des tolérances « e » pour toutes les gorges d'une poulie ne dépassera pas \pm 1,2mm.

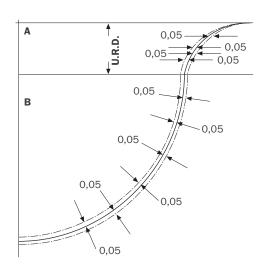
NOMENCLATURE DES GORGES DE POULIES POUR COURROIES POLYFLEX® JB™

^{**} Profondeur de gorge, jusqu'au fond de la partie de la gorge aux flancs droits ; c.-à-d. le point de contact des dimensions « d » et « r »

Dimensions et tolérances des gorges de poulies pour Polyflex® JB™

Désignation de la gorge	Diamètre extérieur	Angle de gorge (α) ± 1/4°	go (mm) ± 0,05	d** (mm)	e* (mm) ± 0,13 / 0,05	f (mm) min.	r (mm) max.	2K (mm) ± 0,15	D (mm) ± 0,2	2b (mm)
3M	17-23	60°	2,80	1,97	3,35	2,23	0,3	4,15	3,00	0,6
SIVI	> 23	62°	2,60	1,90	3,33	2,20	0,3	4,16	3,00	0,0
	26-32	60°		3,28				5,71		
5M	33-97	62°	4,50	3,15	5,30	3,45	0,4	5,75	4,50	0,8
	> 97	64°		3,05				5,79		
7M	42-76	60°	740	5,28	0.50	E CE	0.6	10,20	750	
/ IVI	> 76	62°	7,10	5,08	8,50	5,65	0,6	10,25	7,50	0,9
	67-117	60°	11.00	8,51	12.00	0.00	0.0	15,10	11 50	1.1
11M	> 117	62°	11,20	8,20	13,20	8,60	0,8	15,19	11,50	1,1

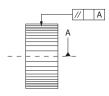
NOTES


- 1 Les flancs de la gorge ne peuvent pas dépasser une aspérité de 3 microns (RMS)
- 2. La somme des tolérances « e » pour toutes les gorges d'une poulie ne dépassera pas \pm 0,30mm
- 3. La tolérance sur le diamètre extérieur est de :
 - 0,13mm pour des poulies avec un diamètre extérieur de 26mm à 125mm
 - 0,38mm pour des poulies avec un diamètre extérieur de 126mm à 250mm
 - 0,76mm pour des poulies avec un diamètre extérieur de 251mm à 500mm
 - 1,27mm pour des poulies avec un diamètre extérieur de 501mm et plus.
- 4. La tolérance radiale maximale est de 0,13mm TIR* pour des diamètres extérieurs jusqu'à 250mm ajoutez 0,01mm TIR* par 25mm si le diamètre extérieur excède les 250mm
- 5. La tolérance axiale maximale est de 0,03mm TIR* par 25mm de diamètre extérieur pour des diamètres jusqu'à 500mm ajoutez 0,01mm TIR* par 25mm si le diamètre extérieur excède les 500mm
- * TIR: Total Indicator Reading, c.-à-d. valeur totale à lire
- ** Profondeur de gorge, jusqu'au fond de la partie de la gorge aux flancs droits ; c.-à-d. le point de contact des dimensions « d » et « r »

TOLERANCES SUR LES ALESAGES ET LES DIAMETRES EXTERIEURS DES POULIES

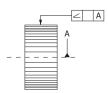
Gates préconise l'usage de poulies fabriquées avec précision suivant les tolérances. Une conception imprécise ou un réalésage pourrait conduire à un rendement médiocre de la transmission. Les tolérances admissibles pour l'alésage et le diamètre extérieur sont indiquées dans les tableaux ci-dessous. La surface de travail doit être exempte de défauts et doit être de 3,2µm ou meilleure.

Zone de tolérance de la poulie

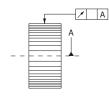


Pas	Partie délimitant la mesure concentrique (mm)
2mm	0,20
3mm	0,32
5mm	0,53
8mm	0,89
14mm	1,65
20mm	2,54

A: mesure concentrique

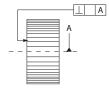

B: mesure perpendiculaire

* Les poulies HTD® 8M et 14M peuvent s'utiliser pour les courroies PowerGrip® GT3.


Parallélisme des dents par rapport à l'axe

Le parallélisme des dents par rapport à l'axe de l'alésage ne peut dépasser un écart maximal de 0,01mm pour 10mm de largeur de poulie.

Conicité

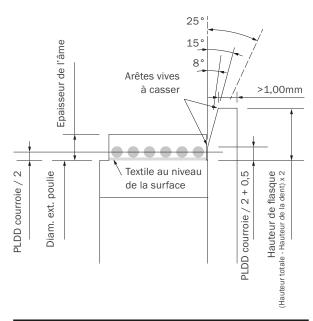

La conicité maximale admissible est de 0,01mm pour 10mm de largeur de poulies, mais ne doit pas dépasser la tolérance du diamètre extérieur.

Excentricité

Valeur admissible de l'alésage de la poulie jusqu'au diamètre extérieur indiquée ci-dessous.

Diamètre extérieur (mm)	Excentricité totale
Jusqu'à 203	0,1
Plus de 203	0,005 par 10mm de diamètre (ne peut dépasser la tolérance sur le diamètre extérieur)

Perpendicularité


L'alésage de la poulie doit être perpendiculaire aux faces verticales de poulie à 0,01mm pour 10 mm de rayon, avec un maximum de 0,51 mm (valeur de lecture).

DONNEES TECHNIQUES

GORGE DE POULIE SYNCHRONE

Conception du flasque de la poulie

- Les poulies synchrones flasquées standard sont équipées de flasques des deux côtés.
- Les gorges de poulies doivent être parallèles à l'axe de l'alésage (0,01mm par 10mm à respecter).
- En fonction de l'angle, le bord extérieur du flasque peut ne pas être au même niveau que l'avant de la poulie de courroie synchrone.

POWERGRIP® HTD & GT				
Pas de la courroie (mm)	Diamètre différentiel de la ligne primitive (PLDD) (mm)			
2	0,508			
3	0,762			
5	1,143			
8	1,372			
14	2,794			

POLY CHAIN® GT					
Pas de la courroie Diamètre différentiel d (mm) la ligne primitive (PLDI (mm)					
5	1,143				
8	1,600				
14	2,800				
19	3,800				

DONNEES TECHNIQUESDIAMETRES MINIMUMS RECOMMANDES POUR LE GALET TENDEUR

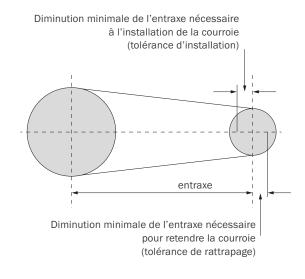
Diamètres minimums recommandés pour le galet tendeur

	Section de la courroie	Diam. ext. min. recommandé de galet int. à gorges		Diam. ext. min. recommandé de galet ext. plat	
	uo la courroio		pouces	mm	pouces
	SPBP	160	6,30	240	9,44
Predator [®]	SPCP	250	9,84	400	15,75
	8VP	317	12,48	445	17,52
	XPZ / 3VX	56	2,20	80	3,15
Quad-Power® 4	XPA	80	3,15	120	4,72
Quau-Power* 4	XPB / 5VX	112	4,41	160	6,30
	XPC	180	7,09	250	9,84
	SPZ	56	2,20	85	3,35
C UO® BAN	SPA	80	3,15	120	4,72
Super HC® MN	SPB	112	4,41	168	6,61
	SPC	180	7,09	270	10,63
	SPZ / 3V	71	2,80	120	4,72
	SPA	100	3,94	160	6,30
Super HC®	SPB / 5V	160	6,30	250	9,84
	SPC	250	9,84	350	13,78
	8V	317	12,48	450	17,72
	Z	60	2,36	90	3,54
	А	85	3,35	110	4,33
	В	112	4,41	160	6,30
Hi-Power®	С	160	6,30	220	8,66
	D	300	11,81	350	13,78
	Е	500	19,69	600	23,62
	AA	85	3,35	*	*
Hi-Power®	BB	112	4,41	*	*
Dubl-V	СС	160	6,30	*	*
	DD	330	12,99	*	*
	SPZ	71	2,80	120	4,72
D. H. N TM	SPA	100	3,94	160	6,30
Delta Narrow [™]	SPB	160	6,30	250	9,84
	SPC	250	9,84	400	15,75
	Z	60	2,36	90	3,54
D-14- Q1 . 1M	А	85	3,35	110	4,33
Delta Classic [™]	В	112	4,41	160	6,30
	С	160	6,30	220	8,66

DONNEES TECHNIQUES

DIAMETRES MINIMUMS RECOMMANDES POUR LE GALET TENDEUR

Diam. ext. min. recommandé Diam. ext. min. recommandé Section de galet int. à gorges de galet ext. plat de la courroie mm pouces mm pouces SPBP 160 6,30 250 9,84 SPCP 400 250 9,84 15,75 **Predator®** PowerBand® 5VP/15JP 250 160 6,30 9,84 8VP 12,48 445 17,52 317 XPZ 56 2,20 80 3,15 XPA 96 3,78 144 5.67 Quad-Power® 4 XPB 7,56 135 5,31 192 PowerBand® зух 71 2,80 100 3,94 5VX 112 4,41 180 7,09 SPB 160 6,30 250 9,84 SPC 250 9,84 400 15,75 Super HC® 3V/9J 71 2,80 108 4,25 PowerBand® 5V/15J 160 6,30 250 9,84 8V/25J 317 12,48 445 17,52 5,39 В 137 180 7,09 Hi-Power® С 228 8,98 300 11,81 PowerBand® D 330 12,99 430 16,93 3L 38 1,50 50 1,97 4L PoweRated® 64 2,52 83 3,27 4,57 5L 89 3,50 116 ЗМ 17 0,67 26 5M 1,02 Polyflex® 7M 42 1,65 11M 67 2,64 ЗМ-ЈВ 17 0,67 5M-JB 26 1.02 Polyflex® JB™ 42 7M-JB 1,65 11M-JB 67 2,64 ΡJ 20 0,79 32 1,26 PK 50 1,97 90 3,54 Micro-V® PL 75 2,95 115 4,53 PM 180 7,09 270 10,63


Diamètres minimaux recommandés de poulies dentées pour courroies synchrones

	Pas de la courroie	Dimensions min. recommandées de poulies (N ^{bre} de dents)	Diamètre min. du galet extérieur (mm)
Poly Chain®	8MGT	22	85
Carbon™ Volt®	14MGT	28	190
Poly Chain® GT2	8MGT	22	*
	14MGT	28	*
DowerCrin® CTV	8MX	22	85
PowerGrip [®] GTX	14MX	28	190
	2MGT	10	10
	3MGT	16	25
PowerGrip® GT3	5MGT	18	45
	8MGT	22	85
	14MGT	28	190
	3M	10	15
	5M	14	35
PowerGrip [®] HTD [®]	8M	22	85
	14M	28	190
	20M	34	325
	MXL	10	10
	XL	10	25
PowerGrip®	L	10	45
Toweramp	Н	14	85
	XH	18	190
	XXH	18	260
	Pas de la courroie	Nb de dents Min.	Nb de dents
	XL	10	10
	L	10	10
Tuin Dame	Н	14	14
Twin Power®	5M	14	14
	8MGT	22	22
	14MGT	28	28

	Pas de la courroie	Dimensions min. recommandées de poulies (N ^{bre} de dents)	Diamètre min. du galet extérieur (mm)
	T2,5	12	20
	T5	10	30
	T10	14	80
Synchro-Power®	AT5	15	60
	AT10	15	120
	T5D	10	
	T10D	14	
	T5	10	30
	T10	14	80
	T10HF	12	60
	T20	15	120
	AT5	15	60
	AT10	15	120
	ATL10	25	150
	ATL10HF AT20	20 18	130 180
	ATL20	30	250
Synchro-Power® LL	HTD5M	14	60
Syncino i onci EE	HTD8M	20	120
	HTD14M	28	180
	HTDL14M	43	250
	HPL14M	44	250
	STD5M	14	60
	STD8M	20	120
	XL	10	30
	L	10	60
	Н	14	80
	XH	12	150

Tolérances minimales d'installation et de rattrapage (courroies trapézoïdales, Micro-V®, Polyflex® et Polyflex® JB™, courroies synchrones

Obtenir les tolérances minimales d'installation et de rattrapage

- Trouvez les tolérances minimales d'installation et de rattrapage dans le tableau
- Si vous ne parvenez pas à ajuster l'entraxe pour installer ou rattraper les courroies, l'utilisation d'un galet tendeur est recommandée. Des instructions distinctes sur l'utilisation de galets tendeurs sont fournies en page 77

Courroles trapézoïdales																	
														Tolérances			
	Section de la courroie trapézoïdale													minimales			
Longueur de		XPA	XPB	SPC	8V	3V /	5V /	8V	Z	Α	Α	В	В	С	С	D	de
référence	3VX	SPA	5VX	XPC		9J	15J	РВ			PB		PB		PB		rattrapage
(mm)	SPZ		SPB			РВ	РВ	25J					SPB		SPC		(mm) Toutes les
	3V		5V					PB					PB		PB		sections
420 - 1199	15	20	-	-	-	30	-	-	15	20	30	25	35	40	50	-	25
1200 - 1999	20	25	25	-	-	35	55	-	20	20	30	30	40	40	50	50	35
2000 - 2749	20	25	25	35	40	35	55	85	20	25	35	30	40	40	50	50	40
2750 - 3499	20	25	25	35	40	35	55	85	-	25	35	30	40	40	50	50	45
3500 - 4499	20	25	25	35	40	35	55	85	-	25	35	30	40	50	60	55	55
4500 - 5499	-	25	25	35	45	-	55	90	-	25	35	40	50	50	60	60	65
5500 - 6499	-	-	35	40	45	-	60	90	-	25	35	40	50	50	60	60	85
6500 - 7999	-	-	35	40	45	-	60	90	-	-	-	40	50	50	60	65	95
8000 -	-	-	35	45	50	-	60	100	-	-	-	-	50	50	60	65	110

PB = PowerBand®

9001 -

Courroles Micro-V® Tolérances minimales d'installation (mm) **Tolérances minimales** Longueur effective (mm) Section de la courroie Micro-V® de rattrapage (mm) **Toutes les sections** ΡJ PK PL PΜ -500 10 10 20 501 - 1000 15 10 1001 - 1500 15 25 15 25 1501 - 2000 20 15 25 35 2001 - 2500 20 20 30 40 40 2501 - 3000 30 40 45 3001 - 4000 30 35 45 60 4001 - 5000 45 65 5001 - 6000 50 70 6001 - 7500 55 85 7501 - 9000 65 100

Courroies Polyflex® et Polyflex® JB™											
	Toléra	ances minimale	s d'installation	(mm)	Tolérances minimales						
Longueur effective (mm)	Co	ourroies Polyfle	k® et Polyflex® J	B™	de rattrapage (mm)						
	3M-JB	5M-JB	7M-JB	11M-JB	Toutes les sections						
180 - 272	5										
280 - 300	7,5	10			5						
307 - 710	10	15	15	25	15						
730 - 1090		25	25	30	30						
1120 - 1500		30	30	35	35						
1550 - 1900			30	40	35						
1950 - 2300			40	50	45						

70

115

Courroles synchrones										
	Longueur de la courroie (mm)	Tolérance min. d'installation (poulies flasquées démontées pour l'installation) mm	Tolérance min. d'installation (une poulie flasquée) mm	Tolérance min. d'installation (deux poulies flasquées) mm	Tolérance min. de tension (toute transmission) mm					
Poly Chain® Carbon™ Volt®	640 - 1000	2	24	35	1					
8MGT	1001 - 1780 1781 - 2540	3	25 25	36	1					
Poly Chain® GT2	2541 - 3300	4	26	37	1					
8MGT	3301 - 4600	5	27	39	1					

DONNEES TECHNIQUESTOLERANCE POUR COURROIE SYNCHRONE

Tolérances pour courroles synchrones

	Tolérance de	e largeur de co	ourroie (mm)
Largeur de courroie (mm)	Longueurs de courroie 0-838 (mm)	Longueurs de courroie 838-1676 (mm)	Longueurs de courroie 1676+ (mm)
3 - 10	+0,4	+0,4	
3-10	-0,8	-0,8	
12 - 38	+0,8	+0,8	+0,8
12 - 30	-0,8	-1,2	-1,2
39 - 51	+0,8	+1,2	+1,2
29-21	-1,2	-1,2	-1,6
52 - 64	+1,2	+1,2	+1,6
52 - 04	-1,2	-1,6	-1,6
65 - 76	+1,2	+1,6	+1,6
05 - 70	-1,6	-1,6	-2,0
77 - 102	+1,6	+2,0	+2,0
11-102	-1,6	-1,6	-2,0
103 - 178	+2,4	+2,4	+2,4
100-110	-2,4	-2,8	-3,2
178+			+4,8
110+			-6,4

Longueur de	Tolérance d'entraxe de courroie (mm)							
courroie (mm)	PowerGrip® / PowerGrip® HTD®	PowerGrip® GT3						
127 - 254	± 0,20	± 0,20						
255 - 381	± 0,23	± 0,23						
382 - 508	± 0,25	± 0,23						
509 - 762	± 0,30	± 0,27						
763 - 1016	± 0,33	± 0,30						
1017 - 1270	± 0,38	± 0,32						
1271 - 1524	± 0,41	± 0,36						
1525 - 1778	± 0,43	± 0,39						
1779	(± 0,43)	± 0,42						
	(± 0,025mm par 254mm)	(± 0,025mm par 250mm)						

DONNEES TECHNIQUES

UTILISATION ET POSITIONNEMENT DES GALETS TENDEURS

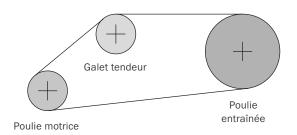
L'utilisation de galets tendeurs sera limitée aux cas où ils sont fonctionnellement nécessaires. Les galets tendeurs sont normalement utilisés pour appliquer une tension lorsque les entraxes ne sont pas réglables.

Les galets tendeurs seront situés sur le brin libre de la transmission par courroie. Pour les galets intérieurs, des poulies dentées sont recommandées jusqu'à 40 dents. Sur des diamètres supérieurs, des galets tendeurs plats peuvent être utilisés. Les diamètres des galets intérieurs ne seront pas plus petits que la plus petite des poulies de la transmission. Les galets tendeurs extérieurs ou sur le dos seront plats et sans couronne ; les flasques ne sont pas recommandés. Les diamètres ne seront généralement pas plus petits que la plus petite poulie en charge dans le système. Des galets tendeurs à ressort sur la longueur à vide peuvent être utilisés, à condition de prendre soin d'éviter les conditions de vibration résonnantes et les inversions de charge.

GALETS TENDEURS SUR LES TRANSMISSIONS PAR COURROIES TRAPEZOIDALES

Un galet tendeur tel qu'utilisé sur des transmissions par courroies trapézoïdales est une roue libre pouvant être soit une poulie à gorges, soit une poulie plate. Les galets tendeurs sont utilisés sur les transmissions par courroies trapézoïdales pour diverses raisons :

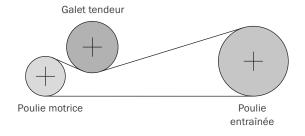
- Pour permettre l'ajustement des transmissions à entraxe fixe.
- 2. Pour contourner des obstacles.
- 3. Pour négocier des virages (comme dans le cas des transmissions à poulies guides).
- 4. Pour fractionner de longues portées, quand les vibrations de la courroie pourraient être un problème.
- 5. Pour maintenir la tension.
- 6. Pour faire office de dispositif d'embrayage.


Les galets tendeurs imposent toujours une fatigue de flexion supplémentaire sur les courroies. Il est donc recommandé de les éviter si possible. Si la transmission le(s) nécessite, les dimensions et les positionnements des galets tendeurs seront conçus de manière à minimiser la réduction de la durée de vie de la courroie.

MISE EN PLACE DES GALETS TENDEURS SUR LA TRANSMISSION

Galets intérieurs ou extérieurs

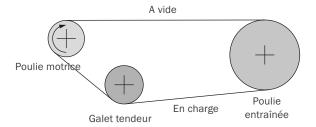
Les galets tendeurs peuvent être positionnés soit à l'intérieur, soit à l'extérieur de la transmission. Un galet intérieur réduit l'arc de contact sur les poulies adjacentes. Les galets intérieurs peuvent être à gorges ou plats. Predator® PowerBand®, Super HC® PowerBand®, Hi-Power® (PowerBand®), Delta Classic™ et Micro-V® fonctionnent de manière satisfaisante avec des galets intérieurs plats. Des galets intérieurs à gorges doivent toujours être utilisés avec Predator®, Quad-Power® 4 (PowerBand®), Super HC® (MN) et Delta Narrow™.

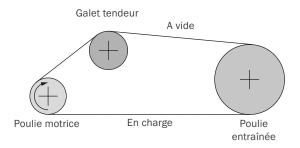

Galet intérieur

Galet extérieur

Un galet extérieur augmente l'arc de contact mais l'ajustage possible est limité par la portée du côté opposé. Les galets extérieurs sont toujours des poulies plates.

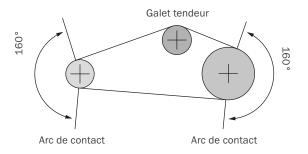
REMARQUE: L'utilisation de galets extérieurs n'est pas recommandée pour les transmissions par courroies Polyflex® JB™.



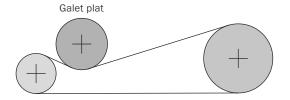

Portées en charge ou à vide

Les galets tendeurs seront placés, dans la mesure du possible, du côté de la longueur libre d'une transmission, plutôt que du côté en charge. Les galets tendeurs à ressort ou lestés seront toujours implantés sur le brin libre, car cela permet à la force du ressort, ou au poids, d'être nettement inférieur dans cette position. De plus, de tels galets tendeurs ne doivent pas être utilisés sur des transmissions dans lesquelles la charge peut être inversée (c'est-à-dire lorsque la longueur à vide peut devenir la longueur en charge).

Galet tendeur sur la longueur en charge


Galet tendeur sur le brin libre

Position du galet tendeur dans la portée


Un galet intérieur à gorges peut être implanté en n'importe quel point de la portée, mais de préférence de manière telle que des arcs de contact quasi identiques soient obtenus sur les deux poulies adjacentes.

Arcs égaux

Positionnement du galet plat

Qu'il soit à l'intérieur ou à l'extérieur, un galet plat doit être implanté aussi loin que possible de la poulie suivante sur le parcours de la courroie. En effet, les courroies trapézoïdales se déplacent légèrement d'avant en arrière sur une poulie plate, si bien qu'implanter le galet le plus loin possible de la poulie suivante minimise la possibilité que la courroie n'atteigne cette poulie avec un écart d'alignement. L'utilisation de galets plats sur des transmissions à longue portée peut causer un fléchissement sévère de la courroie, et doit être évitée si possible.

DONNEES TECHNIQUES

UTILISATION ET POSITIONNEMENT DES GALETS TENDEURS

PLUS D'INFORMATIONS

Diamètres du galet tendeur

Les galets intérieurs doivent être au moins aussi grands que la plus petite poulie de la transmission. Les galets extérieurs doivent être au moins 50% plus grands que la plus petite poulie de la transmission. Les puissances transmissibles des courroies ou la durée de vie des courroies sont considérablement réduites lorsque des galets tendeurs trop petits sont utilisés.

Longueur de la courroie

Une transmission utilisant un galet tendeur doit être disposée à l'échelle, les positions extrêmes d'installation et de rattrapage établies et la longueur mesurée dans chaque position. Assurez-vous que la courroie que vous avez choisie permet une installation et un rattrapage suffisants.

Galets plats

Les galets plats pour transmissions par courroies trapézoïdales doivent être sans couronne. En cas d'utilisation de flasques, les coins inférieurs intérieurs ne doivent pas être arrondis, car cela pourrait faire sortir la courroie de la poulie. Une règle générale pour déterminer la largeur frontale d'un galet plat (entre les flasques le cas échéant) est d'ajouter 1,5 fois la largeur nominale du sommet de la courroie à la largeur frontale de la poulie à gorges utilisée.

Réduction de la puissance transmissible

Comme indiqué ci-dessus, l'utilisation d'un ou de plusieurs galets tendeurs aura un impact sur les performances de la courroie. Dès lors, pour maintenir la durée de vie de la courroie, la puissance transmissible doit être réduite. Si les recommandations ci-dessus sont appliquées, il est possible de concevoir des transmissions par courroies trapézoïdales satisfaisantes utilisant des galets tendeurs en multipliant la valeur normale par le facteur suivant :

Nombre de galets tendeurs	Coefficient multiplicateur
1	0,91
2	0,86
3	0,81

Ces facteurs sont approximatifs. Ils s'appliquent uniquement si les diamètres des galets tendeurs respectent les recommandations ci-dessus. Si la puissance transmissible n'est pas réduite pour tenir compte d'un galet tendeur, la durée de vie de la courroie sera réduite. La durée de vie et la puissance transmissible de la courroie sont réduites bien davantage lorsque des galets tendeurs trop petits sont utilisés, car la contrainte de flexion supplémentaire augmente avec la diminution du diamètre.

DONNEES TECHNIQUES

CONVERSION DE CHAINE A COURROIE

	Correspondances avec les chaînes à rouleaux											
Chaîne	#35	#40	#50	2-#40	#60	3-#40	2-#50	3-#50				
Largeur (mm)	12,7	17,0	21,1	31,5	26,4	45,7	39,4	57,4				
8M-12	•	•	•									
8M-21			•	•	•	•	•					
8M-36							•	•				
8M-62												
14M-20						•	•	•				
14M-37												
14M-68												

			Correspo	ndances	avec les	chaînes	à roulea	ux				
Chaîne – ANSI	#35	#40	#50	2/#40	#60	3/#40	2/#50	2/#60	#80	3/#50	#100	3/#60
Largeur (po)	0,50	0,67	0,83	1,24	1,04	1,80	1,55	1,94	1,32	2,26	1,61	2,84
Chaîne – British Std	06B	08B	10B	08B-2	12B	08B-2	10B-2	12B-2	16B	10B-3	20B	12B-3
Pas (mm)	9,525	12,7	15,875	12,7	19,05	12,7	15,875	19,05	25,4	15,875	31,75	19,05
8M-12	•	•	•									
8M-21		•	•	•	•	•	•					
8M-36						•	•	•	•	•		
8M-62										•	•	•
14M-20					•	•	•	•	•	•		
14M-37										•	•	•
14M-68												
14M-90												
14M-125												

	Correspondances avec les chaînes à rouleaux											
Chaîne ANSI	2-#120	3-#100	#180	2-#140	3-#120	#200	2-#160	2-#180				
Largeur (po)	3,79	4,43	2,88	4,07	5,58	3,12	4,85	5,48				
Chaîne – British Std	24B-2	20B-3	40B	28B-2	24B-3	40B	32B-2	40B-2				
Pas (mm)	38,1	31,75	57,15	44,45	38,1	63,5	50,8	57,15				
19M-100						•	•	•				
19M-150								•				
19M-200												
19M-250												
19M-300												

Remarques

- 1. Tableau basé sur les puissances transmissibles actuelles pour Poly Chain® GT Carbon™
- 2. Les tailles #35 #100 représentent 99,2% des ventes totales d'unités
- 3. Conversion maximale de la taille de la chaîne avec courroies au pas de 8mm en fonction du diamètre : #100
- $4. \ Conversion \ maximale \ de \ la \ taille \ de \ la \ chaîne \ avec \ courroies \ au \ pas \ de \ 14mm \ en \ fonction \ du \ diamètre: \#200$
- 5. Valeurs des chaînes conformément à l'American Chain Association
- 6. Les largeurs des chaînes sont celles mesurées sur les axes.

DONNEES TECHNIQUESCONVERSION DE CHAINE A COURROIE

	Correspondances avec les chaînes à rouleaux											
2-#60	#80	3-#60	#100	2-#80	#120	3-#80	2-#100	#140	#160			
49,3	33,5	72,1	40,9	62,7	50,8	91,9	76,7	54,5	64,5			
•	•											
	•	•	•	•								
•	•											
	•	•	•	•	•							
					•	•	•	•	•			

	Correspondances avec les chaînes à rouleaux												
2/#80	#120	2/#100	#140	3/#80	#160	#180	2/#120	3/#100	#200	2/#140	3/#120	2/#160	2/#180
2,47	2,00	3,02	2,14	3,62	2,54	2,88	3,79	4,43	3,12	4,07	5,58	4,85	5,48
16B-2	24B	20B-2	28B	16B-3	32B	40B	24B-2	20B-3	40B	28B-2	24B-3	32B-2	40B-2
25,4	38,1	31,75	44,45	25,40	50,8	57,15	38,1	31,75	63,5	44,45	38,1	50,8	57,15
•													
•	•												
	•	•	•	•	•	•	•	•					
							•	•	•	•	•		
											•	•	•

	Correspondances avec les chaînes à rouleaux											
2-#200	2-#240	3-#200	3-#240	4-#200	5-#200							
5,94	7,27	8,76	10,7	11,58	14,3							
40B-2	48B-2	40B-3	48B-3	40B-4	40B-5							
63,5	76,2	63,5	76,2	63,5	63,5							
•												
•	•	•										
		•	•	•								
				•	•							

FICHE DE RENSEIGNEMENT DE LA TRANSMISSION

INFORMATIONS CLIENT		
Distributeur:		
Client:		
INFORMATIONS TRANSMISSION		
Identifiant de la transmission (localisation, numéro, etc.)		
Description de l'équipement entraîné		
Fabricant de l'équipement entraîné		
Puissance nominale du moteur (kilowatt)	Diam. arbre moteur	Diam. arbre d'entraînement
Vitesse:		
Tr/min poulie motricetr/min - Mesurée par tachymè	etre à contact ou stroboscope 🛚 Oui 🗀	□ Non
Tr/min poulie entraînéetr/min - Mesurée par tachymè	etre à contact ou stroboscope 🛚 Oui 🗀	□ Non
Rapport des vitesses Multiplicateur	ou de réduction	
Entraxe :		
MinimumNominal	Maximum	
Composants existants de la transmission :		
Poulie motricePoulie entraînée		
CourrolesFa	abricant des courroies	
Conditions ambiantes :		
TempératureHumidité	Huile, etc	
AbrasifsA-coups		
Conductibilité statique requise ? $\ \square$ Oui $\ \square$ Non		
Diamètre maximal de la poulie (diam. ext.) et limites de largeur (po	our le dégagement du carter) :	
Poulie motrice : diam. ext. maxLargeur max		
Poulie entraînée : diam. ext. maxLargeur max		
Description du carter		
Montage moteur :		
Base à double vis ? ☐ Oui ☐ Non		
Moteur monté sur base métallique ? \square Oui \square Non		
Cycle d'utilisation :		
Nombre de démarrages/d'arrêts	fois par	(heure, jour, semaine, etc.)
INFORMATIONS ECONOMIES D'ENERGIE		
Coût d'énergie par kWh		
Heures de fonctionnement :		
Heures par jour	Jours par semaine	Semaines par an
La transmission est-elle soumise à des exigences ATEX ? \square Oui \square	Non	

FEUILLE DE TRAVAIL - DONNEES DESIGN IQ DE GATES

	///////////////////////////////////////		////////		////////			////////	
Compte :									
Contact:									
Adresse :									
Titre :									
Tél. :									
Fax :									
E-mail:									
PARAMETRES DE C	ONCEPTIO	N							
Poulie motrice :									
Type et description du moteur :						(servomote	ur, moteur	pas-à-pas,	CC, CA, etc.)
Inversion : \square Oui \square Non									
Couple/puissance de sortie no	minal du moteı	ır :			tr/min :				
Couple/puissance de sortie ma	ax./de pointe di	u moteur :			tr/min :				
Couple de décrochage du mote	ur (le cas éché	ant):							
Rotation de l	a transmission		(horai	re/antihora	ire/inverse				
Poulies entraînées/galets tend	eurs : (Spécifie	r les unités	appropriée	es pour chac	que champ	; pouce, mm	n / cv ; kw /	/ lb-ft, lb-in,	N-m, etc.)
Description X Y	Diamètre de poulie	Pas	Dents de poulie	Intérieur/ Extérieur	tr/min	Charge (entraînée)	Unités	Conditions # %	Diamètre
	poulle								de l'arbre
Moteur	poune		poune			(entramee)		# Temp	de l'arbre
	poune		pounc			(entranice)		# Temp	de l'arbre
	poune		poune			(cittainee)		# Temp	s de l'arbre
	poune		poulle			(entraniee)		Temp	s de l'arbre
	poune		poulle			(cirtainee)		# Temp	de l'arbre
		tème de tr			s pages sur		es au besoi	Temp	s de l'arbre
Moteur			ansmission				es au besoi	Temp	ge i arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	s de l'arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	get arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	get arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	de l'arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	get arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	de l'arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	de l'arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	de l'arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	de l'arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	de l'arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	de l'arbre
Moteur			ansmission	, utiliser des			es au besoi	Temp	de l'arbre

FEUILLE DE TRAVAIL - DONNEES DESIGN IQ DE GATES

	Détails du	galet tendeur			
	Positi	on min.	Position max.		
Mouvement d'encoche	X	Y	х	Y	
Ressort : Oui Non					
	Point de pivotement		Angle de mouvement		
Mouvement de pivotement	х	Y	Deg. min.	Deg. max.	
Ressort : 🗆 Oui 🗆 Non					
Rayon du bras de pivot		pouces		mm	
		_			

EXIGENCES PARTICULIERES

Durée de vie théorique du produit :			
Durée de vie des courroies :			
Heures/j	our :	Heures/an	
Matériaux des poulies :			
PrototypeProduc	etion		
Considérations relatives à la construction	on des courroles :		
Température :		Humidité :	
Huile:	Diss	ipation statique :	
Abrasifs:			
Exigences particulières :			

7. COMMENT GATES VOUS FACILITE LA TACHE

DRIVEN BY POSSIBILITY™

COMMENT GATES VOUS FACILITE LA TACHE

OUTILS GATES

TENSIOMETRES

Une tension inadaptée – trop basse ou trop élevée – peut causer des difficultés. Gates recommande que toutes les courroies d'entraînement soient correctement tendues, ce qui peut être fait à l'aide d'un tensiomètre. Une tension et une installation appropriées peuvent prolonger la durée de vie des courroies et réduire les temps d'arrêt coûteux. En utilisant le logiciel de conception de Gates, les valeurs de tension des courroies correctes sont disponibles pour toutes les transmissions par courroies de Gates. Plusieurs types de tensiomètres sont disponibles.

Tensiomètre (référence produit 7401-00076)

Force de déflexion maximale : 15kg. A utiliser pour toutes les petites transmissions par courroies trapézoïdales et synchrones, y compris les transmissions par courroies PowerBand® et Poly Chain® Carbon™ Volt®.

Tensiomètre double (référence produit 7401-00075)

Force de déflexion maximale : 30kg. A utiliser pour toutes les transmissions par courroies multibrins et grandes transmissions synchrones, y compris les transmissions par courroies PowerBand® et Poly Chain® Carbon™ Volt®.

Tensiomètre sonique modèle 508C (référence produit 7420-00508)

Pour une mesure extrêmement précise de la tension de courroie, le tensiomètre sonique de Gates est un dispositif électronique qui mesure la fréquence propre d'une portée de courroie libre (à l'arrêt) et calcule instantanément la tension statique de la courroie en fonction de la longueur, de la largeur et du type de courroie.

Spécificité:

- S'utilise pour les courroies synchrones et trapézoïdales
- Utilise des ondes sonores au lieu de la force/déflexion
- Les résultats sont reproductibles quel que soit l'opérateur
- Portable, léger et facile à utiliser
- Rapide, calcule la tension en quelques secondes
- Peut être utilisé dans presque tous les environnements
- Le modèle 508C fonctionne avec deux piles AAA

Pour de plus amples informations concernant les possibilités d'utilisation du tensiomètre sonique sur les différentes gammes de courroies, contactez votre représentant Gates.

REMARQUE IMPORTANTE : le tensiomètre sonique de Gates ne peut pas être utilisé dans des endroits à risque d'explosion (ATEX).

COMMENT GATES VOUS FACILITE LA TACHE

OUTILS GATES

Outil d'alignement laser AT-1 (référence produit 7401-10010 - laser rouge)

L'outil d'alignement laser AT-1 offre une méthode rapide et précise pour mesurer le désalignement des poulies. Il s'installe en quelques secondes et le rayon projeté sur les cibles vous permet de contrôler et de corriger rapidement le désalignement. En outre, il identifie le désalignement tant parallèle qu'angulaire entre les poulies et est adapté aux diamètres de poulies de 60mm et plus. Il peut être utilisé sur des arbres horizontaux ou verticaux.

- Conception compacte
- Le laser projette une ligne
- Cibles laser, facilitant l'alignement des arbres
- La ligne laser est très facile à lire sur les cibles
- Fourni avec un étui de protection souple

REMARQUE IMPORTANTE : l'outil d'alignement laser AT-1 de Gates ne peut pas être utilisé dans des endroits présentant un risque d'explosion (ATEX).

COMMENT GATES VOUS FACILITE LA TACHE

OUTILS D'ANALYSE

OUTILS D'ANALYSE

Lampe stroboscopique

Quand une transmission est en fonctionnement, il est parfois bien difficile de voir ce qui se passe. Cet appareil vous permet de faire un « arrêt sur image » pour mieux estimer les forces dynamiques en action. Il est recommandé d'utiliser la lampe stroboscopique après un diagnostic préliminaire du problème, parce qu'il aidera à en définir la cause. Vous pourrez par exemple constater des vibrations simples ou doubles dans les courroies ou vérifier si les supports fléchissent sous la tension. Cet outil peut aussi être utilisé pour mesurer et contrôler des mouvements de rotation et de vibration et pour faciliter la prise de mesure d'objets minuscules et de zones difficiles à atteindre.

Thermomètre à infrarouge

Le thermomètre infrarouge vous permet de mesurer la température des courroies avec plus de précision. Tout objet émet des ondes infrarouges. Cet appareil mesure cette énergie et la traduit en une valeur de température. L'outil permet une mesure facile et précise de la température de surface à distance sans contact.

Sonomètre

Le sonomètre est utilisé pour mesurer rapidement et avec précision le niveau de bruit en dB produit par votre transmission.

Multimètre numérique

Si les courroies se détériorent prématurément, il se peut que la charge sur l'arbre entraîné ait été sous-estimée lors de la conception. Avec le multimètre numérique, il est possible de contrôler les charges réelles produites par un moteur électrique. Cet outil est le plus pratique puisqu'il ne nécessite pas de dénuder les fils ou de faire attention aux connexions électriques. Il peut aussi détecter des problèmes de vibration dans la mesure où ceux-ci sont causés par des faux contacts dans les interrupteurs, des pointes de tension ou des connexions électriques endommagées.

COMMENT GATES SOUTIENT VOTRE ACTIVITE

Derrière nos produits industriels phares se cache toute une division de professionnels armés de solutions. Motivé par les personnes, les équipements ou la technologie, Gates offre un vaste éventail de services afin d'optimiser les performances des transmissions par courroies et de rentabiliser au maximum les investissements des clients dans les produits de Gates.

SUPPORT DE NOTRE SERVICE TECHNIQUE

Chaque jour, les ingénieurs de conception, les techniciens de maintenance, les fabricants d'équipements et leurs clients du monde entier font confiance à Gates pour garantir un fonctionnement sûr, fiable et régulier. Motivé par les personnes, les équipements ou la technologie, Gates offre un vaste éventail de services afin d'optimiser les performances des transmissions par courroies et de rentabiliser au maximum les investissements des clients dans les produits de Gates.

Pour obtenir une assistance technique et plus encore, rendez-vous sur gates.com/drivedesign.

LOGICIEL DE CONCEPTION DE TRANSMISSION

Gates met également à disposition deux programmes d'utilisation rapide et simple pour sélectionner et gérer des systèmes de transmission par courroie. DesignFlex® Pro et Design IQ™, des outils de calcul et de conception de transmissions en ligne, aident les concepteurs à sélectionner rapidement les solutions optimales en matière de transmissions. Le programme DesignFlex® Pro™ multilingue de Gates vous permet de concevoir une transmission en quelques minutes et d'obtenir toutes les solutions de transmission possibles qui correspondent à vos paramètres de calcul. Vous pouvez aussi imprimer, transmettre par e-mail et créer un fichier PDF des spécifications de calcul. Design IQ™ se présente sous forme d'un écran vierge pour concevoir des transmissions multi-poulies et/ou serpentines complexes. A partir d'un produit Gates spécifique identifié, ainsi que de vos données de transmission, le logiciel calculera la tension de la courroie, la charge sur l'arbre, la longueur de la courroie et bien d'autres paramètres encore.

Design Flex Pro – gates.com/designflex

Design Flex Mobile – gates.com/dfmobile

Design IQ – gates.com/designiq

PROGRAMME GATES DE REDUCTION DES COUTS

Les équipes techniques et commerciales de Gates se tiennent à votre disposition pour effectuer des études sur les sites des clients : les distributeurs et les ingénieurs d'application de Gates mènent des évaluations de performance et établissent un plan de conseils d'entretien pour réduire les coûts énergétiques. Ils évaluent la rentabilité de la transmission actuelle à l'aide de DesignFlex® Pro™ et de l'outil de calcul des économies de Gates et peuvent concevoir un programme d'entretien préventif afin d'optimiser la durée de vie de toutes les transmissions de votre site. Les calculs d'économie d'énergie reposent sur les données les plus pertinentes disponibles et représentent l'économie typique qui peut être prévue si les systèmes de transmission sont correctement installés

Calculateur d'économies d'énergie et autres ressources – info.gates.com/Preventive-Maintenance

SITE WEB DE COMMERCE ELECTRONIQUE DE GATES

Les distributeurs Gates ont accès en ligne à l'information la plus actualisée sur les produits, peuvent passer des commandes 24 h/24 et en suivre l'évolution à n'importe quel moment.

DOCUMENTATION ET SITE WEB GATES

Veuillez consulter notre site Web à l'adresse www.gates.com/ europe/pti pour obtenir des informations à jour et spécifiques sur tous les produits de courroies industrielles Gates ainsi que notre liste de documentation disponible. Les brochures et les plaquettes sur la transmission de puissance industrielle peuvent être téléchargés à partir de ce site. Les distributeurs peuvent se connecter au site européen Gates et fournir ainsi à leurs clients des informations mises à jour sur l'organisation européenne Gates.

PRODUCTION ET DISTRIBUTION GATES EN EUROPE

Les produits Gates sont fabriqués dans des usines spécialisées par famille de produits implantées en Allemagne, en Pologne, en Ecosse, en France et en Espagne. La distribution est gérée depuis un seul entrepôt central situé à Gand (Belgique).

DECLARATION DE GARANTIE

Gates garantit que ses produits de transmission de puissance seront exempts de tout vice matériel et de fabrication pendant toute la durée de vie du produit.

Veuillez noter que cette garantie constitue le recours exclusif du client et ne s'applique pas en cas de mauvaise utilisation ou d'utilisation abusive du produit. Gates décline toute autre garantie (expresse ou implicite), y compris les garanties implicites d'adéquation à un usage particulier et de qualité marchande. Pour de plus amples informations sur la garantie Gates, veuillez consulter www.gates.com/warranty.

CUSTOMER EXPERIENCE TEAM

Korte Keppestraat 21/51 B-9320 EREMBODEGEM Tél.: +32 53 76 27 11

E-mail: inforequest@gates.com

Sous réserve de toute modification de construction. E1/20216 - © Gates Corporation 2018 - Imprimé en Belgique - 08/19.

